PHOSPHAZENES: A GROUP OF PHOSPHORUS-NITROGEN COMPOUNDS

S. S. KRISHNAMURTHY

Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012

AND

R. A. SHAW AND M. WOODS

Department of Chemistry, Birkbeck College (University of London), Malet Street, London, WCIE 7HX, U.K.

THE reaction of ammonium chlor de and phosphorus pentachloride is complex¹ and gives rise to oligometic chlorocyclophosphazenes (phosphonitrilic chlorides), (NPCl₂)_n, and also several linear species containing (NPCl₂) units end-stopped

$$n \text{ NH}_1\text{Cl} + n \text{ PCl}_5 \longrightarrow (\text{NPCl}_2)_n + 4n \text{ HCl}$$
 (1)

by the elements of HCl and/or PCl₃. Although the first member of the homologous series, hexachlorocyclotriphosphazatriene, $N_3P_3Cl_6$, was isolated by Liebig² in 1834, characterisation of higher homologues. (n=4 to 7) was only achieved in the latter part of the nineteenth century³. The fundamental studies of Stokes on chlorocyclophosphazenes and their ammonolysis and hydrolysis reactions⁴ provided the basis for the modern development of the subject.

In the last two decades, there has been considerable progress in many aspects of phosphazene chemistry. In particular, a great deal of attention has been paid to the chemical reactions of the hexachloride, N₂P₂Cl₆, to spectroscopic studies and molecular structure, to the nature of bonding in cyclic phosphazenes and to the technological development of cyclic oligomers and open-chain There are several excellent polyphosphazenes. reviews on these and other aspects of phosphazene chemistry⁵⁻¹². In this article, a brief introduction to some of the significant features of the subject is given as well as an account of developments in Bangalore and other laboratories in the last few years. Actual and potential applications of cyclophosphazenes and phosphazene polymers are noted.

BASIC CHEMISTRY

(a) Aminolysis Reactions

The reaction of the hexachloride N₃P₃Cl₆, with primary, secondary and tertiary amines has received a great deal of attention^{1,8,9}. Replacement of the chlorine atoms of N₃P₃Cl₆ by amino groups may proceed by two different routes—geminal and nongeminal (Fig. 1). The nongeminal mode of replacement permits the possibility of cir-trans isometism at the bis, tris and tetrakis stages of replacement. This type of isometism depends on the disposition

of groups with respect to the plane of the ring. In most reactions, both geminal and nongeminal replacement patterns are found although usually one of them predominates. Table I summarises the results obtained for a number of amines.

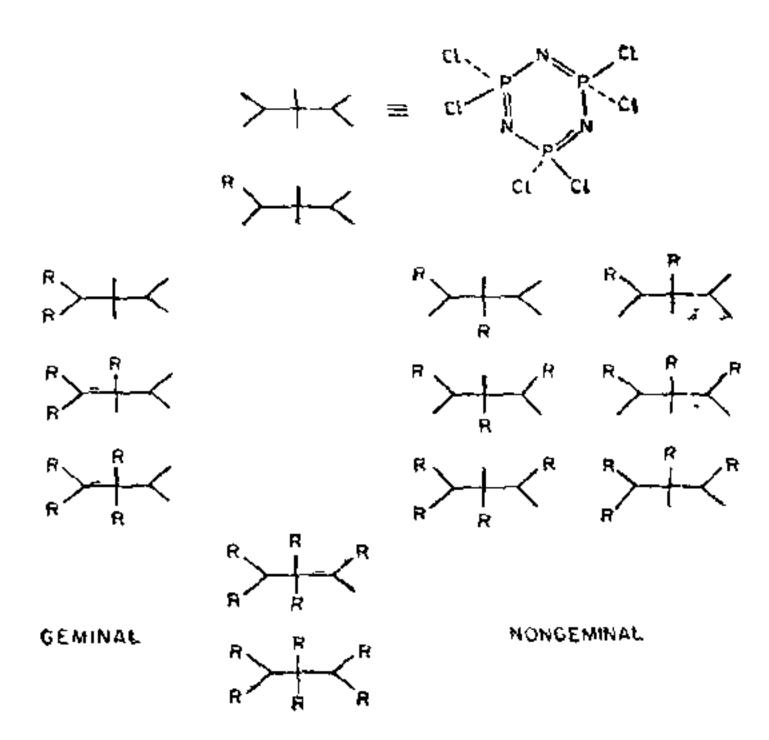


Fig. 1. The geminal and nongeminal pathways in the replacement of chlorine atoms from $N_{\eta}P_{\eta}Cl_{\eta}$ (R groups are attached to P atoms; chlorine and ring nitrogen atoms are not shown).

Secondary amines react predominantly by the nongeminal mode of replacement although significant quantities of geminal tris-compounds can be isolated in aromatic reaction media¹³. The relative proportion of cis- and trans- nongeminal isomers varies. The major bis- and tris-aminocyclophosphazenes formed usually have trans-structures whereas the structure of the tetrakisamino derivatives appears to be dominated by steric considerations [N₃P₃Cl₂ $(NMe_2)_4$ and $N_3P_3Cl_2$ $(NFt_2)_4$ have cis^{44} and trans 15- structures respectively and only minor quantities of their stereo-isomers are obtained). A "cis" effection was proposed to account for the product distribution observed for the reactions of the hexachtoride with dimethylaminett and piperidine 16. Recent kinetic data¹⁷ suggest that a substituent solvating effect may also contribute to the prepondefance of trans- nongeminal bis isomais in secondary amine reactions.

Table I Chlorine atom replacement patterns in the reactions of $N_{\rm s}P_{\rm s}Cl_{\rm b}$ with annues

Amine	Replacement pattern Gemina!							
Ammonia								
Methylamine	Mainly nongeminal + gemina							
Ethylamine	Mainly nongemina: + gemina							
Isopropylamine	Nongeminal + geminal							
tert-Butylamine	Geminal							
Benzylamine	Nongeminal + geminal							
Aniline	Mainly geminal + nongeminal							
Dimethylamine	Mainly nongeminal + geminal							
Diethylamine	Mainly nongemmal + geminal							
Pyrrolidine	Mainly nongeminal + geminal							
Piperidine	Mainly nongeminal + geminal							
Aziridine	Geminal							
N-Methylaniline	Nongeminal + geminal							

Whereas reactions of N₃P₃Cl₆ with secondary amines can be rationalised by the assumption of an S_N2 (P) mechanism, analogous reactions with primary amines are more complex and additional mechanistic features assume importance. Ammonia¹⁸ and t-butylamine¹⁹ react with the hexachloride, N₃P₃Cl₆, to give only products with geminal structures. A proton abstraction mechanism has been suggested to account for this observation (Fig 2).

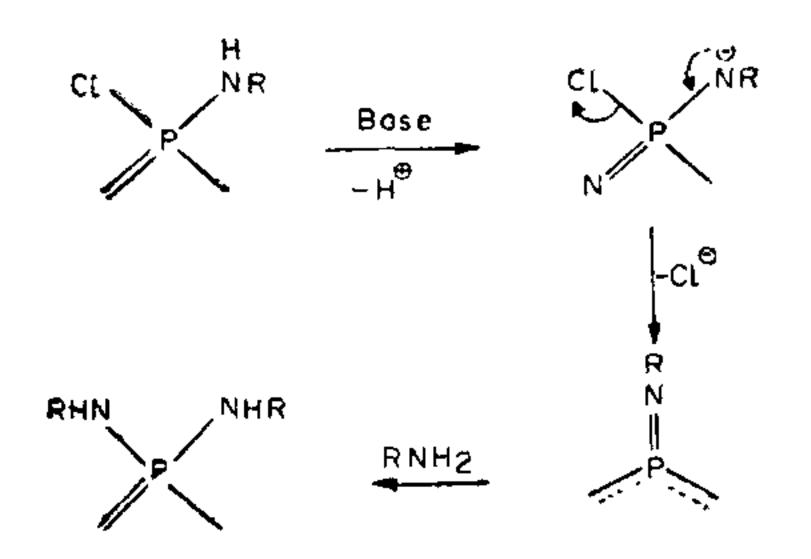


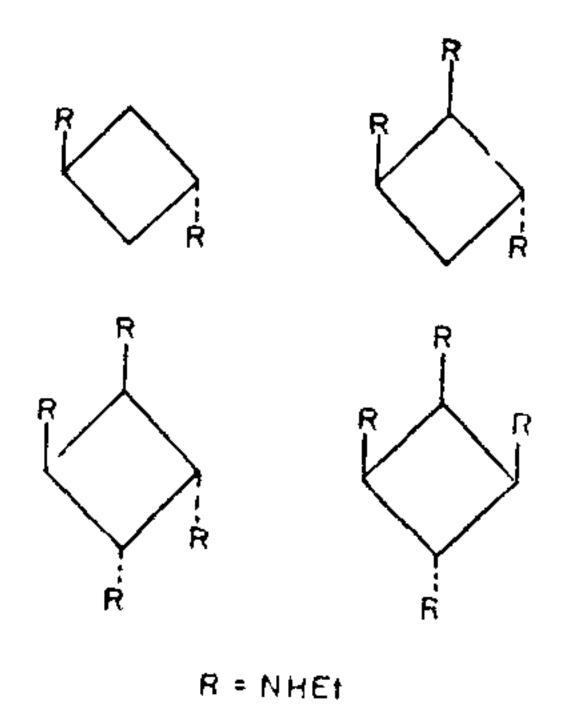
Fig. 2. Proton abstraction mechanism

Such a mechanism is rendered plausible by the recent isolation²⁰ of a three-coordinate phosphrous (V) compound, $(Mo_3Si)_2 NP (= NSiMe_3)_2$. Ethylamine²¹ and isopropylamine²² react initially by the nongeminal mode of replacement and then by the

gem nal one (Equation 2). The geminal tris and nongeminal tetrakis derivaties have not been isolated

although substantial amounts of the former would be expected as intermediates in the formation of geminal tetrakis compounds. In addition to the proton abstraction mechanism, the geminal mode of replacement is probably promoted by the formation of six-membered, cyclic hydrogen-bonded complexes²¹ (Fig. 3).

Fig. 3. Possible hydrogen bonded complexes in the reactions of $N_2P_3Cl_8$ with primary amines.


Considerable difficulty is encountered in the isolation of pentakisaminochlorocyclotriphosphazatrienes, $N_3P_3Cl(NRR')_5$. The strong electron supply from amino substituents may cause a changeover to a relatively facile heterolysis of the P-Cl bond in an S_1 type process. Clare and Sowerby have isolated the monochloropentakisdimethylaminocyclotriphosphazatriene, $N_3P_3Cl(NMe_2)_5$, and noted its ready hydrolysis by atmospheric moisture. A stable monochloropentakisamino compound, $N_3P_3Cl(NMe_2)_4$ [N (CH₂Ph)₂], has been reported recently; its stability may be due to steric shielding by the bulky dibenzylamino group 24.

The aminolysis reactions of fluoro- and bromocyclotriphosphazatrienes have not been studied systematically. Some reactions of N₃P₃F₆ with ammonia²⁵ and primray and secondary amines have been reported²⁶²⁷. Fluorodimethylaminocyclotriphosphazatrienes can be prepared by fluorination of the corresponding chloro derivatives^{28,29} or by the reaction of the hexakisdimethylamino compound, N_3P_3 (NMe₂)₆, with antimony trifluoride²³. The reaction of N₃P₃Br₆ with dimethylamine³⁰ gives the mono, three bis and two tris derivatives (gem and nongem trans). The cis-isomer, $N_3P_3Br_3$ (NMe₂)₃, has been obtained only from the reaction of N_3P_3 (NMe₂)₆ and hydrogen bromide in boiling xylene³¹. Formation of a tertrakis derivative was detected (tlc)30.31 but pure compounds could not be obtained. A preliminary investigation of the

reaction of N₃P₃Br₆ with ethylamine shows that the general features of the system are similar to those found in the analogous reactions²¹ of hexachlorocyclotriphosphazatriene, N₃P₃Cl₆ (M. N. Sudheendra Rao, Unpublished results).

Aminolysis reactions of the octachloride, N₄P₄Cl₈, and the higher homologues (NPCl₂), have received little attention; the experimental problems associated with the separation of complex mixtures of products and the subsequent difficulties in assigning structures to pure isomers are considerable (there are 33 possible dirivatives of the tetramer). Millington and Sowerby have isolated thirteen products from the reaction³² of N₄P₄Cl₈ with dimethlamine in diethyl ether at - 78° C. The reaction proceeds via the non-geminal path; geminal products were obtained only in poor yields. These workers have also prepared many nongeminal fluorodimethylamino compounds, $N_4 P_4 F_{8-n} (NMe_2)_n$ N_4P_4 (NMe₂)₈ with antimony fluoride³⁸ and by These compounds are probably formed by an similar reactions using tris- and tetrakis-chlorodimethylamino precursors³⁴.

We have recently investigated the reactions of $N_4P_4Cl_8$ with ethylamine³⁵, t-butylamine³⁶ and N-methylaniline³⁶. The reactions of the primary amines have similar features; mono, bis, tris, tetrakis (ethylamine only) and octakis derivatives can be obtained. Reactions involving higher stoichiometries (particularly 1:10 and 1:12, N₄P₄Cl₈: amine) give only copious quantities of sticky, resinous materials and chloroaminocyclotetraphosphazatetraenes could not be detected35. The resins appear to contain tetrameric units probably arise by cross-linking reactions. The chloroethylamino derivatives isolated have nongeminal structures (Fig. 4). N-Methylaniline reacts

(NHEt)_n $N_4P_4Cl_{8-n}$ Fig. 4. Sauctures (n = 2, 3, 4).

with N₄P₄Cl₈ to give the derivatives, N₄P₄Cl_{8-n} $(NMePh)_n$ [n = 1, 2 (two isomers, 3, 4 (five isomers), 6] (S. S. Krishnamurthy, R. A. Shaw, M. N. Sudheendra Rao, A. R. Vasudeva Murthy and M. Woods, unpublished results). In contrast to the dimethylamine reaction where only one major bis-isomer (2-trans-6) is found32, reaction of N₄P₄Cl₈ with N-methylaniline (a much less reactive amine) gives two bis-isomers in roughly equal amounts. Crystallographic evidence confirms that one isomer has a 2-trans-6 structure and 31P NMR spectroscopy suggests that the other has a 2, 4-structure³⁶.

The role of the reaction solvent in cyclophosphazena chemistry is not entirely clear at the moment. Recent work shows that solvents can exert a considerable influence on cyclophosphazene reactions. One of the highlights of a current study has been the isolation of bicyclic phosphazenes from the by the reaction of aminolysis reactions of $N_4P_4Cl_8$ in chloroform. intramolecular trans-annular nucleophilic replacement reaction (Fig. 5). The crystal structure of

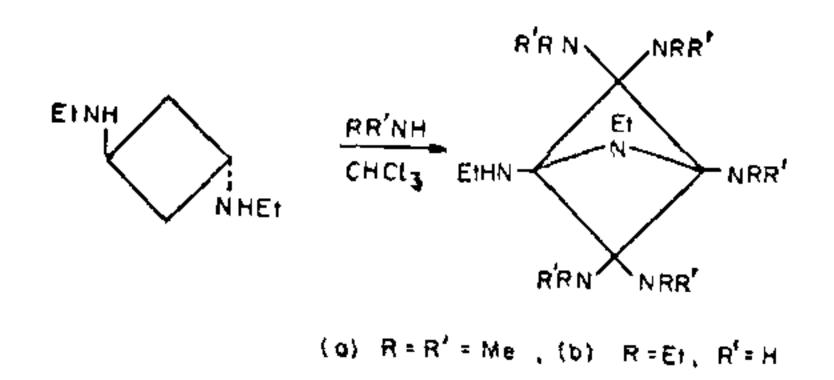


Fig. 5. Formation of bicyclic phosphazenes.

 N_4P_4 (NMe₂)₅ (NHEt) (NEt) shows that the original P-N heterocycle retains its phosphazene character but that the P-N bonds at the bridgehead are longer and more phosphazane-like³⁷. If these reactions are carried out in diethyl ether35, the fully cyclophosphazatetraene substituted derivatives, N_1P_4 (NHE1)., (NRR'), are isolated in good yields $(\sim 80\%)$.

Chlorocyclophosphazenes containing two different amino substituents have also been prepared in order to evaluate the role of substituent and nucleophile in determining the structures of the products¹³. The reactions of N₃P₃Cl₅ (NHFt) and N₃P₃Cl₅ (NHBut) with two equivalents of t-butylamine and ethylamine are shown in Scheme 1. The structures

$$N_{3}P_{3}Cl_{a} (NHBu') \longrightarrow \frac{2NH_{2}E^{t}}{ng-N_{3}P_{3}Cl_{4} (NHBu')}$$

$$(NHEt)$$

$$2NH_{2}Bu^{t}$$

$$g-N_{3}P_{3}Cl_{4} (NHBu')_{2}$$

g-geminal ng-nongeminal

of the products obtained from the reactions indicate that the attacking nucleophile dominates the course of these aminolysis reactions³⁸. It appears that reactions of the octachloride, N₄P₄Cl₈, with primary aximes¹⁰, are similarly influenced by the nucleophile. The important role of the nucleophile in many cyclophosphazene reactions has also been confirmed by the recent kinetic studies of Goldschmidt and Leht¹⁷. Chlorocyclophosphazenes containing both primary and secondary amino substituents have also been prepared and similar conclusions can be drawn^{9,24}.

It appears that in some reactions the substituent aready present in the cyclophosphazene ring can counteract the influence of the incoming nucleophile. At present, the only example of this type is provided by the triphenylphosphazenyl (NPPh₃) substituent. Dimethylamine¹⁴ and piperidine¹⁶ react with monosubstituted derivatives, $N_3P_3Cl_5R$, to give nongeminal products $N_3P_3Cl_4R_2$ ($R = NMe_2$, pip) but with $N_3P_3Cl_5$ (NPPh₃) to give the geminal product, $N_3P_3Cl_4R$ (NPPh₃) to give the geminal product, $N_3P_3Cl_4R$ (NPPh₃) 10.4°.

(b) Alcoholysis and Thioalcoholysis

The reactions of chlorocyclophosphazenes with alcohols, phenols and thiols have also been studied in some details. Alcohols and phenols react mainly by nongeminal replacement of chlorine atoms. The separation of pure chloroal oxy (aryloxy) isomers is not easy, particularly when small, straight-chain alcohols are employed. Recently, Schmutz and Allcock⁴² have prepared and separated nine trifluoroethoxy derivatives, $N_3P_3Cl_{6-n}$ (OCH₂CF₃), (n = 1-6) by gas liquid chromatography. Several n-butoxy derivatives, $N_3P_3Cl_{6-n}$ (OBu_n), (n = 1, 2, 3, 6) have also been reported⁴³.

Thiols react exclusively by a geminal mechanism which has been rationalised in terms of 'hard' and 'soft' acid/base interactions⁴⁴ 45. Chlorothioalkoxy-cyclophosphazenes are obtained by using a large excess of a sodium thiolate and usually only an even number of chlorine atoms is replaced (Equation 3).

$$N_3P_3Cl_6 + N_3SR \xrightarrow{\text{organic solvent}} N_3P_3Cl_{6-n} (SR)_n$$

$$n = 2,4,6 \qquad (3)$$

$$N_3P_3F_6 + NaSEt \longrightarrow N_3P_3F_{6-n} (SE1)_n$$
 $n = 1-5$ (4)

The hexassuoride reacts with sodium ethanethiolate to give mono, bis. tris, tetrakis and pentakis ethylthio derivatives but again only compounds with geminal structures are obtained (Equation 4). Derivatives containing -SAr groups in nongeminal dispositions can be obtained by an alternative route⁴⁷ (Equation 5).

$$cis - N_3 P_3 CI_2 (NMc_2)_4 + NaSR \longrightarrow$$

$$cis - N_3 P_3 (SR)_2 (NMe_2)_1$$

$$R = p - C_6 H_4 Me_2 Ph$$
(5)

Although fully substituted thio-esters, N_3P_3 (SR)₆, can be prepared⁴¹, the analogous compounds in the tetramer series were not obtained: the only reaction products were geninal tetra-substituted derivatives, $N_4P_4Cl_4$ (SR)₄, and organic disulphides, R_2S_2 . Cleavage of the tetrameric ring occurred under more forcing reaction conditions⁴⁵.

An interesting feature of the chemistry of alkoxycyclophosphazenes [NP (OR)₂]_{3,4} is their ability to rearrange when heated alone⁴⁸ (Fig. 6) or in the presence of an alkyl halide⁴⁹. Thio-analogues do not undergo this reaction.

Fig. 6. Alkoxyphosphazene-oxophosphazene re-arrangement.

(c) Reactions with Organometallic Reagents

The hexachloride, $N_3P_3Cl_6$, reacts with phenyl magnishum bromide in diethyl ether to give small quantities of the cyclic hexaphenyl derivative, $N_3P_3Ph_6$ and acyclic phenylated phosphazenyl magnesium complexes from which hydrogen halide derivatives, e.g., $Ph_3P = N - PPh_2 = NH\cdot HX$, (X = Cl, Br) can be isolated⁵⁰. Similar reaction with the octachloride, $N_4P_4Cl_8$, gives two cyclic products⁵¹, $N_4P_4Cl_4Ph_4$, which have the structures shown in Fig. 7. The ring contraction can

Fig. 7. Products of the reaction of $N_4P_4Cl_8$ with PhMgBr.

be explained by a mechanism involving cleavage of the tetrameric ring followed by cyclisation of

the phenylated acyclic species, $Ph_3 P = N - P$ (Ph Cl) $[= N - PPh_2]_2 = N-Mg-Br$.

Phenyl lithium reacts with the hexachloride, $N_3P_3Cl_6$ in diethyl ether to give soluble acyclic polymers of low molecular weight⁵¹. The latter possess unreacted phosphorus chlorine bonds and chain branching is evident. The analogous reaction⁵² with the hexafluoride, $N_3P_3F_6$, gives the cyclic products, $N_3P_3F_6$, Ph_n , n=1,2 (three isomers); nongeminal structures are predominant. The reaction of the octafluoride, $N_4P_4F_8$, with methyl lithium gives methyl, dimethyl, trimethyl, tetramethyl and octamethyl derivatives. The replacement pattern observed is predominantly geminal and has been interpreted in terms of a π -inductive effect⁵³.

Non-geminal phenylated chlorocyclophosphazenes can be prepared by a cyclisation reaction⁵⁴ (Equation 6). Stereoisomers have been obtained for both trimer and tetramer in this reaction.

$$n \text{ PhPC!}_4 + n \text{ NH}_4\text{C!} \longrightarrow (\text{PhNPC!})_n + 4n$$

 $HC! \quad n=3, 4$ (5)

Bromophenyl derivatives can be prepared similarly 55,

The Friedel Crafts reaction⁵⁶ of the hexachloride, $N_3P_3Cl_6$, with boiling benzene in the presence of aluminium chloride gives the geminal diphenyl derivative, $N_3P_3Cl_4Ph_2$. The tetra- and hexa-phenyl derivatives can be obtained under more forcing conditions. Similar reactions with aminochlorocyclophosphazenes, $N_3P_3Cl_{6-n}$ R_n ($R = NMe_2^{57}$, Pip^{58}) indicate that phenylation proceeds most readily at a $\equiv PCIR$ group (Fig. 8).

Fig. 8. Friedel Crafts reactions of chlorocyclotriphosphazatrienes.

(d) Complex and Adduct Formation

Cyclophosphazenes form many coordination complexes, Lewis acid-base adducts and crystalline inclusion compounds. Allcock^{1.8} has reviewed these aspects in detail and two recent papers⁵⁰ summarise the subsequent work.

Physical Methods of Structure Determination (a) Nuclear Magnetic Resonance Spectroscopy

Nuclear magnetic resonance spectroscopy has emerged as the most powerful tool for elucidating

the molecular structures of cyclophosphazene derivatives in solution. The 1H nmr spectra of some aminochlorocyclophosphazenes illustrate this aspect very clearly. Keat, Ray and Shaw found that cis-, trans- and geminal- $N_3P_3Cl_3$ (NMe_2)₃ isomers can be distinguished by the observation of one, two and three dimethylamino doublets (coupling to phosphorus) respectively in their proton nmr spectra⁶⁰. In addition, the magnitude of the apparent proton-phosphorus coupling constant $^3J^*$ (P-H) helps to distinguish a geminally substituted group ($\equiv PR_2$) from a nongeminal one ($\equiv PClR$) ($R \equiv NHMe$, NHEt, NME_2 , NMePh). In general, the magnitude of the geminal coupling constant is 3-5 Hz smaller than that of the non-geminal one.

In many of the proton spectra of cyclophosphazene derivatives, additional lines or broad humps appear amongst the signals expected from first-order considerations. This phenomenon has usually been termed long range "virtual coupling" and its origin has been discussed elsewhere⁶¹. Although "virtual coupling" can create problems in the interpretation of many spectra, the extent of "virtual coupling" (or its absence) can sometimes yield structural information (viz., geminal-N₄P₄Ph₄ (NMe₂)₄ isomers)⁶².

The spectra of three chloro-N-methylanilinocyclotetraphosphazatetraenes are shown in Fig. 9 (N-methyl signals only) and illustrate the general points noted above.

The development of sophisticated instrumental facilities and the application of broad band ¹H decoupling have greatly improved the quality and usefulness of the 31P NMR spectra of cyclophosphazenes. The spectra of the three isomers (I, II and III) (Fig. 10) would be of the types AB₂C, AA' BB' and A₂B₂ respectively and are readily identified although if J/Δ^p becomes relatively small, it may not be easy to differentiate AA'BB' and A_2B_2 spin systems. The two bist-butylaminohexachlorocyclotetraphosphazatetraenes. N₁P₄ (NHBu¹)₂ Cl₀, mp 171° and 128°, give rise to symmetrical A₂B₂ and AA' BB' 31P spectra indicating that these isomers have a 2, 6- and 2, 4disposition of t-butylamino groups39. The 31P spectra of many amino-derivatives of N₃P₃Cl₆ and some selected tetrameric derivatives have been analysed recently and some trends in 31P chemical shifts and P-N-P coupling constants have been discerned 13.

(b) Infrared Spectroscopy

Infrared studies of cyclophosphazene derivatives have not proved to be as useful as NMR spectroscopy in determining the disposition of substituent groups, although in some cases it is possible to distinguish geminal and non-geminal isomers in the trimeric system⁶⁴. IR spectroscopy can provide

The spectra of cyclophosphazene derivatives exhibit a broad absorption band in the range $1150-1450 \text{ cm}^{-1}$ which has been attributed⁶⁵ to a degenerate ring stretching vibration, $\nu(P=N)$. Typical values are shown in Table II and illustrate the importance of ring size, electronegativity, steric effects, etc.

Sequent to protonation). It is believed¹³ that in Type I compounds, the N-P bond of the triphenyl-phosphazenyl group is more or less parallel to the local NPN ring segment whereas in Type II compounds, it is approximately perpendicular. Two recent crystallographic studies⁶⁷ ⁶⁴ provide examples of Type I and Type II conformations.

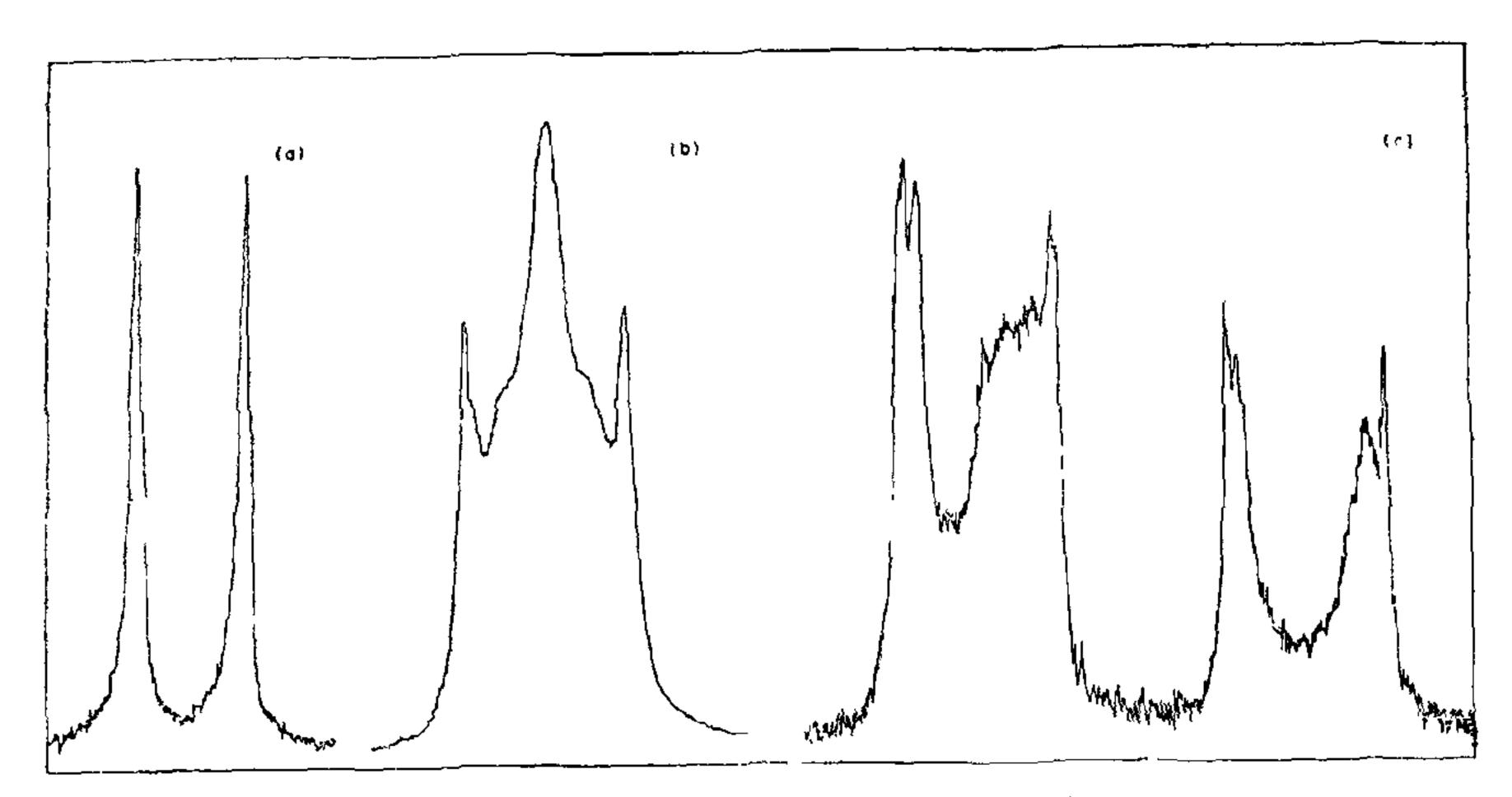


Fig. 9. ¹H NMR spectra (CDCl₂, 100 MHz) of (a) 2, 2, 6, 6,- $N_4P_4Cl_4$ (NMePh)₄. (b) 2, 4, 6, 8,- $N_1P_4Cl_4$ (NMePh)₄. (c) 2, 2, 4, 6, 8- $N_4P_4Cl_5$ (NMePh)₃ (Frequency separations on the same scale); (NMe signals only).

Fig. 10. Isomeric configurations of $N_4P_4Cl_6A_9$. (c) Basicity Measurements

The technique of basicity measurements^{9.13} developed by Feakins, Shaw and coworkers can be used to distinguish geminal and nongeminal trisand tetrakis-amino isomers. There is now considerable evidence (including X-ray structures of two protonated compounds)⁶⁸ for protonation at a ring nitrogen atom in most cyclophosphazenes. Basicity measurements of cyclophosphazenes containing a triphenylphosphazenyl substituent⁴¹ indicate that protonation can take place either at a ring nitrogen atom (Type I) or at the nitrogen atom of the phosphazenyl substituent (Type II), probably because of a difference in conformation of the triphenylphosphazenyl group (prior/or sub-

TABLE II

Ring P = N vibrational frequencies in cyclophosphazene $(cm^{-1})^a$

	· · · · · · · · · · · · · · · · · · ·			
R	$N_3P_3R_6$	N ₁ P ₄ R ₈		
F	1297	1435		
Cl	1218	1315		
Br	1175	1275		
Me	1180	1220°		
Ph	1190	1213		
NH_2	1170	1240		
NHEt	11805	12508		
NHBun	1195	1260		
$NHC_2H_{11}^n$	1190	1265		
NMe.	1195	1265		

a Reference 6, p. 197.

b Reference 39, c Reference 110,

(d) X-ray Crystallography

The structures of a large number of cyclophosphazene derivatives have been determined by X-ray diffraction. Corbridge has reviwed this work recently 68. The equality of ring P-N bond lengths in nomogeneously substituted cyclophosphazene derivatives and the shortness of these bonds compared with the accepted value (1.77 Å) for P-N single bond have provided good evidence for some kind of π -interaction involving nitrogen and phosphorous atoms. The X-ray crystallographic data have also provided strong evidence for the presence of π -bonding between phosphorus and exocyclic groups such as -NMe₂ or -OR. It has been pointed out that the ring P-N bond lengths in a derivative $N_3 P_2 X_6$ decrease with increasing electronegativity of X. This is also accompanied by a decrease in the angle subtended by the exocyclic substituents at phosphorus, an increase in the ring NPN angle and a decrease in the ring PNP angle. In a heterogeneously substituted compound, the ring P-N bonds. are of different lengths. Thus in the geminal diphenyl compound, N₃P₃Cl₄Ph₂, there are three different P-N bond lengths⁷⁰ with mean values 1.555, 1.578 and 1.615 Å. The analogous fluoro compound⁷¹ and geminal tetraphenyl⁷² compound, N₃P₃Cl₂Ph₄, also show three types of ring P-N bonds. These differences can be attributed to greater d-orbital contractions at the phosphorus atom bearing the most electronegative substituents leading to a strrengthening of the skeletal π -bonding. The X-ray crystal structures of cyclotetraphosphazatetraenes show that the eight membered P-N ring can adopt one of several different conformations (Table III).

(e) Other Techniques

Nuclear Quardrupole Resonance spectra (85Cl) of some chlorocyclophosphazene derivatives have been reported. A linear relationship has been observed between NQR frequency and P-Cl bond length⁷³. Positional isomers may be distinguished by this technique but unambiguous structural assignments to geometrical isomers are not generally possible⁷⁴.

It should be possible, in principle, to distinguish geometrical isomers from dipole moment measurements as demonstrated for the cis and trans isomers of N₃P₃Ph₃Br₃55, N₃P₃Cl₄ (NMe₂)₂ and N₃P₃Cl₃ (NMe₂)₃75. Such measurements are unsuitable for the identification of chloro (trifluroethoxy) cyclotriphosphazene isomers. This difficulty is presumably due to the neglect of the atom polarizability term and the possible deviations of the ring from planarity⁴².

Bonding in Cyclophosphazenes

Bonding in cyclophosphazenes (characterised by a formally unsaturated system) has intrigued a number of investigators. Craig and Paddock have proposed a $d\pi - p\pi$ model in which extensive delocalization of π electrons occurs over the entire ring⁷⁶. The same authors also postulated 77 a π -bonding interaction in the ring plane involving the lone pair of electrons on the skeletal nitrogen atom (π' -bonding). Dewar et al. have put forward an alternative model in which π -electron interaction is confined to threecentre P-N-P islands⁷⁸. Detailed quantum mechanical calculations⁷⁹ and Faraday effect studies⁸⁰ on cyclophosphazenes tend to support the latter model. Doggett⁸¹ has suggested that the two models do not differ fundamentally but only in the choice of parameters. Labarre, Perkins and their respective coworkers have pointed out that trans-annular phosphorus—phosphorus bonding may contribute significantly to the stability of the six-membered P-N ring system⁸².

PHOSPHAZENE HIGH-POLYMERS

(a) Cyclolinear and Cyclomatrix Polymers

There are three basic approaches to the synthesis of phosphazene based polymers leading to the formation of cyclolinear, cross-linked cyclomatrix and linear type polyphosphazenes 1-8-11, 12,83. The first two types utilize the high thermal stability of cyclotri- and cyclotetraphosphazene rings by linking them through bifunctional organic groups. The formation of cyclolinear polymers is illustrated in Fig. 11.

Fig. 11. The formation of cyclolinear polymers,

Cyclophosphazene substrates with more than two active groups (usually halogen) may also react with diols or diamines to give cyclomatrix polymers (Fig. 12). The extensive cross-linking usually found in such polymers is responsible for their insolubility and high melting points.

(b) Linear Polymers

Chlorocyclophosphazenes, (NPCl₂)₁, on heating in the bulk state under non-rigorous experimental

TABLE III

X-ray structural data for cyclotetraphosphazatetraenes

Compound	Ring shape	Mean ring P-N bond length (Å)	Mean ring P-N-P angle (°)	Mean ring N-P-N angle (°)	Ref
N ₄ P ₄ F ₈	Planar	1 · 51	120-3	119.4	91
$N_4P_4Cl_8(K)$	Intermediate Boat-saddle	1 · 57	131.3	121.2	92
$N_4P_4Cl_8(T)$	Chair	1.56	135-6	120-5	93
N ₄ P ₄ Br ₈	Intermediate Boat-saddle	1 · 575	131 0	120 · 1	94
N ₄ P ₄ F ₆ Mc ₂ (2, 2, 4, 4, 6, 6; 8, 8)	Saddle	1-525	145-0	121.5	95
N ₄ P ₄ F ₄ Me ₄ (2, 2, 4, 4; 6, 6, 8, 8)	Saddle	1 · 56	134.6	121 · 7	96
N ₄ P ₄ F ₄ (NMe ₂) ₄ 2-cis-4-trans-6-trans-8	Chair	1.55	139 5	121.3	97
N ₄ P ₄ F ₄ (NMe ₂) ₄ 2-trans-4-cis-6-trans-8	Saddle	1 · 557	134.7	122 0	98
N ₄ P ₄ Cl ₄ Ph ₄ 2, 2, 4, 4: 6, 6, 8, 8)	Saddle	i·553, I·591	128·8- 135·4	120 0	99
NaPaClaPha -cis-4-cis-6-cis-8	Irregular crown	1 · 57	137 5	121 0	100
N ₄ P ₄ Cl ₄ Ph ₄ l-cis-4-trans-6-trans-8	Chair	1 · 57	135 4	120 0	101
N ₄ P ₄ Cl ₆ (NMe) ₂ 2-trans-6	Chair	1.569	134.2	120 6	102
N ₄ P ₄ Cl ₄ (NMe ₂) ₄ l-cis-4-trans-6-truns-8	Hybrid crown-saddle	1.556	136 8	121-1	103
N ₄ P ₄ Cl ₂ (NMe ₂) ₆ -trans-6	Chair	1 · 57	135 4	120 7	104
N ₄ P ₄ Me ₈	Hybrid boat-saddle	1.60	131 9	119 8	105
$I_4P_4Ph_8$	Hybrid boat-saddle	1 · 59	127.8	119.8	106
I ₄ P ₄ (OMe) ₈	Saddle	1 · 57	132 0	121.0	107
N_4P_4 (NMe ₂) ₈	Hybrid boat-saddle	1 · 58	133.0	120.0	108
N ₄ P ₄ (NCS) ₈	Chair	1 · 543	140 0	120.2	109

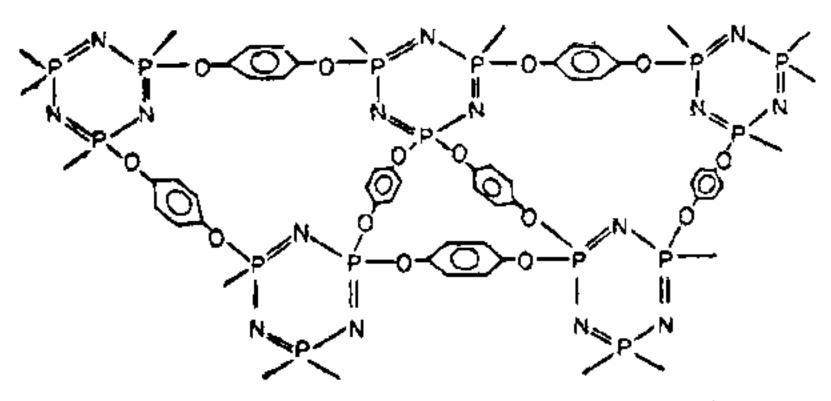


Fig. 12. A phosphazene cyclomatrix polymer.

conditions give an elastomeric polymer called "inorganic rubber" which is highly cross-linked and insoluble in organic solvents. This polymer is hydrolytically unstable and becomes brittle on prolonged exposure to moist air. Efforts to overcome this problem by replacement of chlorine atoms with hydrolytically stable organic groups have been unsuccessful because the reactions are very slow and complete replacement of chlorine atoms inside the cross-linked matrix is virtually

impossible. Allcock and coworkers⁸⁴ have shown that "poly (dichlorophosphazene)" free from crosslinks can be obtained by carrying out the polymerization of $N_3P_3Cl_6$ under carefully controlled conditions and by limiting the conversion to $\sim 70\%$. They have recently established that traces of water, function as a powerful catalyst whereas PCl_5 is a powerful inhibitor for the polymerization reaction⁸⁵. The mechanism of the polymerization reaction is not yet fully understood.

Poly (dichlorophosphazene), free from crosslinking 1.85, is soluble in organic solvents and reacts readily and completely with a wide variety of nucleophilic reagents (Fig. 13). Copolymers and terpolymers

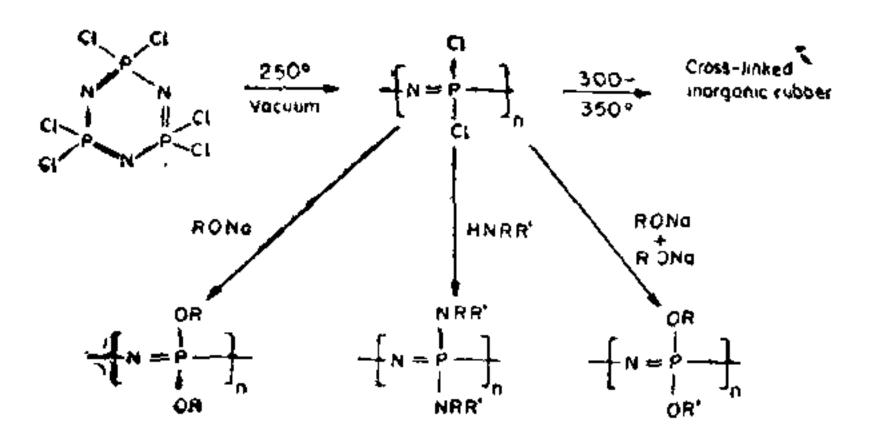


Fig. 13. The reactions of poly (dichlorophosphazene).

containing different substituents can be prepared¹¹. Generally the homopolymers are flexible film-forming thermoplastics whereas the copolymers are elastomeric in nature. Polymers with different physical characteristics can be obtained by varying the substituents. Table IV summarises the

properties of some selected linear polyphosphazenes. One of the most attractive features of the phosphazene linear polymeric system is the prospect of designing polymers for specific applications by the judicious choice of suitable substituent groups.

Potential Applications

Hexa-ammonocyclotriphosphazatriene, N₂P₂ (NH₃), is found to be a good fertilizer for certain crops as it can supply both nitrogen and phosphorus in a concentrated form86. The aziridinocyclophosphazenes have been used as chemosterilant insecticides (under the trade name "apholate")87. The alkoxycyclophosphazenes, in particular the n-propoxy derivatives, are excellent flame retardants for viscose rayon88. Phosphazene cyclomatrix polymers are amenable to conventional "curing" processes. In has been suggested that they may find use in high temperature aerospace applications and as heat-resistant coatings for electrical components⁸⁹. Linear polyphosphazenes containing fluoroalkoxy groups are resistant to acids, alkales, and hydrocarbon fuels and retain their flexibility over a wide temperature range. They are being developed for fabricating lip seals, gaskets and fuel hoses serviceable at low temperatures (- 40° C)11. Poly (alkoxyphosphazene) derivatives have good flame retarding properties and may find extensive use as textile impregnating agents and fire resistant foams. Polyphosphazenes also show promise as body implantation plastics⁹⁰.

Table IV

Properties of some linear polyphosphazenes^{1,11}

Compound	Molecular weight	Intrinsic viscosity dl/g	T _v (° C)*	Solubility ⁴
$(NPCl_1)_n$	$1-2\times10^6$ a, e	2.40	-63	Benzene
$[NP(OMe)_2]_n$	$6,40,000^a$	1 · 22	-76	Methanol
[NP (OCH ₂ CF ₃)] _n	1,700,000*	2.70	-66	Ketones
[NP (OCH ₂ CF ₃) (OCH ₂ C ₃ F ₇)] _n	$>6\times10^{6}\sigma$	2.40	—77	Freons
[NP (OPh) ₂] _n	$3,700,000^{a}$	2.70	5.5	THF
$[NP(OC_6H_4Cl-m)]_n$	3.89 × 108 a	* *	21	Chloroform
[NP (NHPh) ₂ l _n	1,650,000	1.44	91	Benzene
[NP (NEt ₂) (NHMe)],	230,000 ^b	1.41	8	THE

a Light scattering.

b Ultracentrifugation.

c By differential thermal analysis or differential scanning calorimetry.

d At room temperature.

e Not very accurate owing to slow cross-linking in solution.

ACKNOWLEDGEMENT

We thank the University Grants Commission, New Delhi, and the Overseas Development Ministry, U.K., for support of the binational project on 'Phosphazenes". S. S. K. and M. W. also thank Prof. A. R. Vasudeva Murthy for his interest.

- 1. Allcock, H. R., Phosphorus-Nitrogen Compounds, Academic Press, New York, 1972.
- 2. Liebig, J., Ann. Chem., 1834, 11, 139.
- 3. Stokes, H. N., Amer. Chem. J., 1897, 19, 782,
- 4. Stokes, H. N., Ibid., 1895, 17, 275; Ibid., 1896, 18, 629.
- 5. Shaw, R. A., Fitzsummons, B. W. and Smith, B. C., Chem. Rev., 1962, 62, 247.
- 6. Paddock, N. L., Quart. Rev., Chem. Soc., 1964, 18, 168.
- 7. Sowerby, D. B., "Phosphonitriles", In: MTP International Review of Science, Inorganic Chemistry Series, I, 1972, 2, 117.
- 8. Allcock, H. R., Chem. Rev., 1972, 72, 315.
- Keat, R. and Shaw, R. A., In: Organic Phosphorus Compounds, Kosolapoff, G. M. and Maier, L (Ed.), Interscience, New York, 1973, Vol. 6, 833.
- 10. Goldschmidt, J. M. E., "The Cyclophosphazenes", In: Analytical Chemistry of Phosphorus Compounds, Halmann, M., (Ed.). Wiley—Interscience, New York, 1972, 13, 523.
- 11. Singler, R. E., Schneider, N. S. and Hagnauer, G. L., Polymer Eng. and Sci., 1975, 15, 321.
- 12. Kireev, V. V., Kolesnikov, G. S. and Raigorodskii, I. M., Russ. Chem. Rev. (Eng. Transl.), 1969, 38, 667.
- 13. Shaw, R. A., Z. Naturforsch. (In press).
- 14. Keat, R. and Shaw, R. A., J. Chem. Soc., 1965, p. 2215.
- 15. Lehr, W. and Rosswag, N., Z. anorg. Chem., 1974, 406, 221.
- 16. Keat, R. and Shaw, R. A., J. Chem. Soc. (A), 1966, p. 908.
- 17. Goldschmidt, J. M. E. and Licht, E., J. Chem. Soc. Dalton, 1972, p. 728; Ibid., 1972, p. 732.
- 18. Feistel, G. R. and Moeller, T., J. Inorg. Nucl. Chem., 1967, 29, 2731; Lehr, W., Z. anorg. Chem., 1967, 356, 18.
- 19. Das, S. K., Keat, R., Shaw, R. A. and Smith, B. C., J. Chem. Soc., 1965, p. 5032.
- 20. Scherer, O. J. and Kuhn, N., Chem. Ber., 1974, 107, 2123; Niecke, E. and Flick, W., Angew. Chem. Internat. Edn., 1974, 13, 134; Pohl, S., Niecke, E. and Krebs, B., Angew. Chem. Internat. Edn., 1975, 14, 261.
- 21. Das, R., Shaw, R. A., Smith, B. C. and Woods, M., *J. Chem. Soc. Dalton*, 1973, p. 709.
- 22. Das, S. K., Keat, R., Shaw, R. A. and Smith, B. C., J. Chem. Soc. (A), 1966, p. 1677.
- 23. Clare, P. and Sowerby, D. B., J. Inorg. Nucl., Chem., 1974, 36, 729,

- 24. Hasan, M., Shaw, R. A. and Woods, M., J. Chem. Soc. Dalton, 1975, p. 2202,
- 25. Roesky, H. W. and Niecke, E., Inorg. Nucl. Chem. Letters, 1968, 4, 463.
- 26. Glemser, O., Niecke, E. and Roesky, H. W., J. Chem. Soc. Chem. Comm., 1969, p. 282.
- 27. Chivers, T., Oakley, R. T. and Paddock, N. L., J. Chem. Soc. (A), 1970, p. 2324.
- 28. Green, B. and Sowerby, D. B., J. Chem Soc. (A), 1970, p. 987.
- 29. —, and Clare, P., Ibid., 1971, p. 3487.
- Stahlberg, R. and Steger, E., J. Inorg. Nucl. Chem., 1966, 28, 684; Ibid., 1967, 29, 961.
- 31. Nabi, S. N., Shaw, R. A. and Stratton, C., J. Chem. Soc. Dalton, 1975, p. 588.
- 32. Millington, D. and Sowerby, D. B., 1btd, 1972, p. 2035.
- 33. and —, *Ibid.*, 1974, p. 1070.
- 34. and —, Ibid., 1973, p. 2649.
- 35. Keat, R., Krishnamurthy, S. S., Sau, A. C., Shaw, R. A., Vasudeva Murthy, A. R. and Woods, M., Ibid. (In press).
- 36. —, —, —, Sudheendra Rao, M. N., Vasudeva Murthy, A. R. and Woods, M., Z. Naturforsch., 1974, 29 B, 701.
- 37. Cameron T. S., Mannan, Kh., Krishnamurthy, S. S., Sau, A. C., Shaw, R. A., Vasudeva Murthy, A. R. and Woods, M., J. Chem. Soc. Chem. Comm, 1975, p. 975.
- 38. Keat, R. and Shaw, R. A., Angew. Chem. Internat. Edn., 1968, 7, 212.
- 39. Sau, A. C., Ph.D. Thesis, I.I.Sc., Bangalore, 1976.
- 40. Biddlestone, M. and Shaw, R. A., J. Chem. Soc. Dalton, 1973, p. 2740.
- 41. —, Nabi, S. N. and Shaw, R. A., *Ibid.*, 1975, p. 2634.
- 42. Schmutz, J. L. and Allcock, H. R., Inorg. Chem., 1975, 10, 2433.
- 43. Zeleneva, T. P., Antonov, I. V. and Stepanov, H. I., J. Gen. Chem. (U.S.S.R.), 1973, 43, 1000.
- 44. Carroll, A. P. and Shaw, R. A., J. Chem. Soc. (A), 1966, p. 914.
- 45. —, —, and Woods, M., J. Chem. Soc. Dalton, 1973, p. 2736.
- 46. Niecke, E., Glemser, O. and Roesky, H. W., Z. Naturforsch., 1969, 24 B, 1187.
- 47. Woods, M., Ph.D. Thesis, London University, 1969.
- 48. Fitzsimmons, B. W., Hewlett, C. and Shaw, R. A., J. Chem. Soc., 1964, p. 4459.
- 49 —, and —. *Ibid.*, 1965, p. 7432.
- Biddlestone, M. and Shaw, R. A., J. Chem. Soc. Soc (A), 1969, p. 178; J. Chem. Soc. Dalton, 1975, p. 2527.
- 51. (a) and —, *Ibid.*, 1970, p. 1750; (b) and —, *Phosphorus*, 1973, 3, 95.
- 52. Allen, C. W. and Moeller, T., *Inorg. Chem.*, 1968, 7, 2177.
- 53. Ranganathan, T. N., Todd, S. M. and Paddock, N. L., *Ibid.*, 1973, 12, 317.
- 54. Grushkin, B., Sanchez, M. G. and Rice, R. G., Ibid., 1964, 3, 623; Humiec, F. S. and Bezman, I. I., J. Amer. Chem. Soc., 1961, 83, 2210; Shaw. R. A. and Stratton, C., J. Chem. Soc., 1962, p. 5004.

55. Moeller, T. and Nannelli, P., Inorg. Chem., 1963, 2, 659; *Ibid.*, 1963, 2, 896.

56. Acock, K. G., Shaw, R. A. and Wells, F. B. G., J. Chem. Soc., 1964, p. 121; McBee, E. T., Okishara, K. and Morton, C. J., Inorg. Chem., 1965, 4, 1672.

57. Das, S. K., Shaw, R. A. and Smith, B. C., J. Chem. Soc. Dalton, 1973, p. 1883.

58. —, — and —, *Ibid.*, 1974, p. 1610.

59 Searle, H. T., Dyson, J., Ranganathan, T. N. and Paddock, N. L., Ibid., 1975, p. 203; Calhoun, H. P., Paddock, N. L. and Wingfield, J. N., Can. J. Chem., 1975, 53, 1765.

60. Keat, R., Ray, S. K. and Shaw, R. A., J. Chem. Soc., 1965, p. 7193.

61. Finer, E. G., Harris, R. K., Bond. M. R., Keat, R. and Shaw, R. A., J. Molecular Spectroscopy, 1970, 33, 72; Finer, E. G., Ibid., 1967, 23, 104.

62. Biddlestone, M., Bullen, G. J., Dann, P. E., Krishnamurthy, S. S., Shaw, R. A. and Woods, M., Phosphorus, 1973, 3, 179.

63. Keat, R., Shaw, R. A. and Woods, M., J. Chem. Soc. Dalton (In press).

64. Chapman, A. C., Paine, D. H., Searle, H. T., Smith, D. R. and White, R. F. M., J. Chem. Soc., 1961, p. 1768; Stahlberg, R. and Steger, E., Spectrochim. Acta, 1967, 23 A, 2005.

65. —, and Paddock, N. L., J. Chem. Soc., 1962, p. 635.

Mani, N. V. and Wagner, A. J., Acta Cryst., 1971, 27 B, 51; Allcock, H. R., Bissell, E. and Shawl, E. T., Inorg. Chem., 1973, 12, 2963.

67. Biddlestone, M., Bullen, G. J., Dann, P. E. and Shaw, R. A., J. Chem. Soc. Chem.

Comm., 1974, p. 56.

68. Babu, S., Cameron, T. S., Krishnamurthy, S. S., Manohar, H. and Shaw, R. A., Z. Naturforsch. (In press).

69. Corbridge, D. E. C., The Structural Chemistry of Phosphorus, Elsevier, Amsterdam, 1974, p. 333.

70. Mani, N. V., Ahmed, F. R. and Barnes, W. H., Acta Cryst., 1965, 19, 693.

71. Allen, C. W., Paul, J. C. and Moeller, T., J. Amer. Chem. Soc., 1967, 89, 6361.

72. Mani, N. V., Ahmed, F. R. and Barnes, W. H., Acta Cryst., 1966, 21, 375.

73. Keat, R., Porte, A. L., Tong, D. A. and Shaw, R. A., J. Chem. Soc. Dalton, 1972, p. 1648,

74. Dalgleish, W H, Keat. R., Porte, A. L., Tong, D. A., Hasan, M. and Shaw, R. A., 1bid., 1975, p. 309.

75. Koopman, H., Spruit, F. J., Van Deursen, F. and Backkers, J., Rec. Trav. Chim., 1965, 84, 341.

76. Craig. D. P. and Paddock, N. L., Nature, 1958, 181, 1052.

77. — and —, J. Chem. Soc., 1962, p. 4118.

Dewar, M. J. S., Lucken, E. A. C. and Whitehead, M. A., Ibid., 1960, p. 2423.

79. Faucher, J.-P., Devanneaux, J., Leibovici, C. and Labarre, J. F., J. Molecular Struct., 1971, 10, 439; Faucher, J.-P., Labarre, J. F. and Shaw, R. A., Ibid., 1975, 25, 109.

80. Faucher, J. P., Glemser, O., Labarre, J.-F. and Shaw. R. A., CR Acad. Sci. Paris,

1974, 279 C, 441.

81. Doggett, G., J. Chem. Soc., Faradey 1972, p. 2075.

82. Armstrong, D. R., Longmuir, G. H. and Perkins, P. G., J. Chem. Soc. Chem. Comm., 1972, p. 464; Faucher, J.-P. and Labarre, J.-F., Phosphorus, 1974, 3, 265.

83. Allcock, H. R., Chem. in Britain, 1974,

p. 118.

84. — and Kugel, R. L., J. Amer. Chem. Soc., 1965, 87, 4216; Allcock, H. R., Kugel, R. L. and Valan, K. J., Inorg. Chem., 1966, 5, 1709.

85. —, Gardner, J. E. and Smeltz, K. M., Macro-

molecules, 1975, 8, 36.

86. Wakefield, Z. T., Allen, S. E., McCullough, J. F., Sheridan, R. C. and Kohle, J. J., J. Agr. Food Chem., 1971, 19, 99.

87. Chem. Week, 1963, Dec. 14, 83.

88. Godfrey, L. E. A. and Schappel, J. W., Ind, Eng. Chem. Prod. Res. Develop., 1970, 9, 426.

89. Reference, 1, p. 377.

Chem. and Eng. News, 1975, June 16, 22.

McGeachin, H. M. and Tromans, F. R., J. Chem. Soc., 1961, p. 4777.

92. Hazekamp, R., Migchelsen. T. and Vos, A., Acta Cryst., 1962, 15, 539.

93. Wagner, A. J. and Vos, A., Ibid., 1968, 24 B, 707.

94. Zoer, H. and Wagner, A. J., Ibid., 1972, 28 B, 252.

95. Marsch, W. C. and Trotter, J., J. Chem. Soc. (A), 1971, p. 573.

96. Marsh, W. C. and Trotter, J., Ibid., 1971, p. 569.

Millington, D., King, T. J. and Sowerby, D. B., J. Chem. Soc. Dalton, 1973, p. 396.

98. Begley, M. J., Millington, D., King, T. J. and Sowerby, D. B., Ibid., 1974, p. 1162.

99. Bullen, G. J. and Dann, P. E., Acta Cryst., 1974, 30 B, 2861.

- and Tucker, P. E., J. Chem. Soc. Dalton, 1972, p. 1651.

101. Burr, A. H., Carlise, C. H. and Bullen, G. J., Ibid., 1974, p. 1659.

Bullen, G. J. and Dann, P. E., Ibid., 1973, p. 1453.

- and Tucker, P. A., Ibid., 1972, p. 2437. 103. - and Dann, P. E., Ibid., 1974, p. 705. 104.

Dougill, M. W., J. Chem. Soc., 1961, p. 5471. 105. Begley, M. J., Sowerby, D. B. and Tillet,

R. J., J. Chem. Soc. Dalton, 1974, p. 2527. Ansell, G. B. and Bullen, G. J., J. Chem. Soc. (A), 1971, p. 2498.

108. Bullen. G. J., J. Chem. Soc., 1962, p. 3193,

Faught, J. B., Can. J. Chem., 1972, 50, 1315. 109. Searle, H. T., Proc. Chem. Soc., 1959, p. 7,