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ABSTRACT

For a special but non-trivial case of homogeneous and initially axisymmetric turbulence,
the change in component energies due to a sudden but otherwise arbitrary three-dimensional

distortion is found in closed form.

1. INTRODUCTION

HE effect of an externally imposed arbitrary

distortion on homogeneous and Initially iso-
tropic turbulence was worked out in detail by
Batchelor and Proudmanl-—~hereafter B and P-—on
the assumption that the distortion was rapid enough
to justify the neglect of inertia and viscous forces.
These resulls have been found useful in a vanety
of flow situations (see, e.g., Townsend?) although
their applicability is lhimited by the assumption of
isotropy, which is rarely (if ever) found in practice.
On the other hand, axisvmmmetric turbulence is
much more common, especially in wind tunnels,
This note presents results for the change in indivi-
dual turbulent energy components produced by
rapid but otherwise arbitrary three-dimensional dis-
torticn, for a non-trivial case of initially axisym-
metric turbulence in which a pair of independent
functions characterizing the spectrum of turbulence
is assumed to depend only on the wave-number magni-
tude. (For the interpretation of such special fields
see Chandrasekhar3.) Earlier analyses of the axi-
symmetric problem are generally 1ncomplete, and
sometimes erroneous, as will be discussed in detail
elsewhere.

For brevity, familiarity with B and P 1s assumed
here.

2. FORMULATION

The general second order two-point axisymmetric
spectrum  tensor is known (see, e.g., Batchelor?)
to be

&i, (k) = Ajk s + Agdy; -+ Agdihy
+ ANk + Ak, (1)

where A 1S a unit vector along the axis of sym-

metry and each of the five functions A depends in
general on k= |k| and k, =k . A . Symmetry in

A

the indices {, j, and the equation of continuity,
require that only two of the functions A; are inde-

pendent, so that (1) may be written (with a prime

denoting conditions before distortion) as
¢y (k) = (k% — J[ff@') F (k, k)

'an (k) = (K* — 5, (F 4 G) — k2 G (&, ky),
n =273,

where G = — A,/k2 and F=—(A;+ A,).
Closely following B and P, the expressions for

the spectra after distortion (indicated by double
primes) are obtained as:
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3. ARBITRARY DISTORTION

The ratio of the energy component in the direc-
tion of symmetry is given by
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where Dx and Dk = dk dS(k) are volume elements

in x and & spaces respectively.
We first note, from (2), that
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where

Using (2) and (4) in (5), we get
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where, using (5a), integrations with respect to %
have effectively been cancelled out. Thus all that
needs to be known of the initial state is the ratio
R; the exact forms of ¢, (k;) and ¢ ' (k;) are
irrelevant.

The second term in (6), giving the modifications
due to axisymmetry, vanishes if (a) the turbulence
is isotropic (R=1) or if (b) the distortion is axi-
symmetric (e, —e,). After integration on the
azimuthal angle has been performed one gets
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and the overbar symbol here denotes corresponding

isotropic quantities.

The integral in (7) can always be expressed in
terms of elliptic integrals of the first and second
kind, F (¢, m) and E(¢, m)3. Thus, if e5 2 e, 2 ¢y,
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Similarly,
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This can be integrated to give, for instance,
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where [ —arc tan(a1).

If the e, are ordered differently, standard trans-
formations can be used to express u, and #, in
terms of elliptic integrals with real and positive
modulus and argument. In practice, however,
numerical calculation of the integrals in (7) and
(8) is easier. Finally, writing (7) and (8) in a
slightly different way as

_ R —1
= M ' R‘(ﬁ!-’q)

and
n o p‘ﬂ — (R - 1) (fﬂ—\-f‘ﬂ):

where A #; and A u are independent of R, it can
be shown that A w4 is always positive whereas A "
takes both positive and negative values. Figures 1
and 2 show the ‘correction terms’ Ax; and Agp
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plotted in a convenient form as a function only

of distortion geometry. &, and ;i can be obtained
from the analysis of B and P.
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4. SoMe SpeciAL CASES

(a) Axisymmetric Distortion : Here ¢, — e3 — ¢, t.
It follows from (7) and (8) that

ti =
and
ey =y — (R — 1) (e — ﬁn)-_
for large e, uy— e, 2 (Inde? — 1)
and
g, —> €, (1 — 1 R).

The limitations of the above analysis for R >4
are obvious.

(b) Large two-dimensional distortions: If e, =1,
e; == eyl > 1 one gets
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To order e,71, however, these resulls tend to the
case {a).

(¢} Small two-dimensional distortions : If eq=1
and (e; — 1) is small and positive,

u"-—"i—-iB l
b= 35 F1(€1+])2

5. CONCLUSION

This analysis represents a rational alternative to
the use of isotropic theory for the case of small

departures from isotropy (as in flow behind grids),
if only for ‘weak’ turbulence,

Further details and assessment of results are
available in Sreenivasan®.
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