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ABSTRACT
The physical origin of some of the scaling factors introduced in the mass formula given

* & a » - " - gj
In 4 pfevous paper is expl,:;uned in terms of interactions involving magnetic charges.
role of gavitation in detetmining the mass is also clarified in greater detail.

INTRODUCTION

N a recent paper a formula for calculating the

masses O  various elementary particles was
developed 0; the basis of a dynamical theoryt, The
central idez of this paper was that the various ele-
mentary pyticles are excited states of a primordial
object whch is executing harmonic oscillations
about sone equilibrinm configuration determined
by the uterplay of gravitational and other (e.g.,
electromsgnetic)  interactions. Accordingly the
restorin: forces and hence the oscillation fre-
quencis are controlled by these factors. That the
graviftional interaction (general relativity) might
pla’ some role in the problem of the mass quanti-
z¢ion of elementary particles has also been
nphasized recently by some other authors?3. The
purpose of the present paper is to amplify and

clarify certain details that were not given but pro-
mised in the earlier paper.

THE QUANTUM GRAVITATIONAL MAss CONSTANT

As shown by Motz3, by equating the Gaussian
~urvature of the space occupied by a particle having

rest mass M_ to the inverse Compton length, one
gets the relation :

165G M2 = he {1)

where G is the Newtonian gravitational constant.
We have introduced a factor 167 in the pre§cnt
paper so as fo be consistent with a covariant

quantum gravitational mass consiant as given by
Rosent,

Thus
he

M, = (lﬂrG
which was referred to by us as the Planck mass i

o.r previous paper!, Motz has named the particle
having the mass

the ‘*untton’.
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Now the solution of the Einstein field equations

for a spherically symmetric mass M with charge
e, that relates the electromagnetic interaction to
the metric of the surrounding space is given by

the well-known line element found by Reissner?
and by Nordsiroms, as :
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where

G

= ‘EEJ—[’ d2% = d6°* + sin26d¢?
Ross2 has postulated that a particle assumes an
equilibrium radius such that the effectivé sgravita-
tional potential is a minimum. With this postulate,
it can be shown that the above metric exhibits an

equilibrium point at r,, where r, is given as:
a3
e

—_ -~ == —3b r
To M o2 9 X 1075 em (3)

m

{for the Planck mass given by Eq. (2)].
We shall now show that at this value of the radius
there 15 no force acting on an extensible object
having a charge e. Consider a displacement of the
equilibrivm radius r, by an infinitesimal amount A r.
Making use of the:geodesic equation we have (using
the co-ordinates, X0 = jict, X1 = r, X2 =4, X3 =¢),

— %Iy = acceleration, (4)

where the s are the Christoffel symbols of the

second kind. For the above line element, we have :
2 GM eG )
— C7L 7y (“' - -

e o -t

r2 et

Thus the force acting on the particle of mass
r turns out to be
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neglecting the higher order ferms,
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At the equilibrium radius r,,

GMm Ge'm
&: 01 and -_7_; - _‘.'-'[;?'_Ei ] {6)

Accordingly the force F on displacement can be
wrniten as:
1 3
F'A'-:"(?—GD'STB Ge® m) Ar
21y

which 1s zero at the radius r,. when Ar=20

(7)

As no forces act on the object when it is at
radius r,, it is indeed the equilibrium radivs.
Fquation (7) suggests that F is a restoring force,
the quantity within brackets being related 10 a
stiffiness constant. The corresponding frequency of
oscillation is then given by :

tﬂu-ﬂdv

If we were to take a covariant formulation of the
equations of motion in general relativity then there
will be a few additional terms in equation (8);
however, these turn out to be much smaller in

magnitude. This point will be elaborated upon
and discussed elsewhere.

2
3Ge 4GM)' (8)
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The foregoing shows that on disturbing the
object from its equilibrium configuration, elastic
restoring forces of a general relativistic origin are
set up as a result of which the object oscillates
around the equilibrium point. On using the value
of the Planck mass (quantum gravitational mass)
as given by equation (2) and the corresponding
gquilibrium radius r, [given by equation (3)], the
frequency w, [as given by equation (8)], turns out
to be ~ 5 x 1044 C/sec,

- As remarked in our earlier paperl and as also
noted by Motz3, the uncertainty principle forces
the final configuration to expand to the correct
size of the particle. Let us consider the case of
the electron. The frequency «, of the primordial
object having a bare mass equal to the Planck
mass corresponds to a Compton length o & ¢fwp~
6 X 1035 ¢cm. In other words the object is obser-
vable at this distance with energy hw, As the
dynamically stable configuration expands, the fre-
guency decreases inversely as the distance. This
can be interpreted as energy lost in increasing the
radius of curvature. Applying the uncertainty

principle the frequency (o,) corresponding to the
electron rest mass can be written as:

. = ﬂ,—“ w, = T-77 X 10°°C/S (9)

A e
where x , =386 X 10711 cm = electron Compton
wavelength, As shown in Ref. 1, the ground

state of an oscillator having the frequency w_ gives
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the electron rest mass.

W can rewrite equation
(9) as:

Ao
Ae

al, =

i

exXD ( —_—&-:?‘Wn:?"?? « 10 C/[S:

where
2

e
a = .—.r=100-4.
fic’ 0

The scaling factor exp (—x/a) is sinilar to that used
in the formula for the electron mass given by
Rosen2. The advantage in putting the factor in
this form is seen by letting o —» 0,then the mass
also tends to zero. This might exlain why the
massless lepton counterpart of the dectron,
the neutrino has no charge.

‘ie.,

THE RENORMALISATION OF FREQUEN IES

In the earlier paperl we saw that for mesons

and baryons the frequencies were resectively
scaled up by

1 q 1
90 ¢ ANE gap @

a being the fine structure constant. To arrive a this
scaling, we invoke the concept of magnetic chrfges
(monopoles) introduced by Dirac? and recelly
revived by SchwingersS.

It may be remarked that the introduction of
magnetic charges brings in symmetry in Maxwell's
equations and explains the universality of the elec-
tric charge. Following Dirac and Schwinger we
introduce the magnetic charge ‘f. Now there is
no observational evidence for the existence of {ree
magnetic charges in nature, so far (for example,
see Amaldi®). Each magnetic charge f must have
a countercharge — f, as all particles are observed to
be magnetically neutral. If we were to consider the
three charges e, f and — f, the system will have an

angular momentumB. On quantizing this, we get
the relation

Eg =nh (10)

For the fundamental magnetic charge we choose

n— 1, {Dirac allows half-integral values also). Thus
we have :

(11)

This shows that the fundamental magnetic charge
s 1/a (== 137) times larger than electric charge.
According to the currently accepted view there are
two kinds of hadrons, namely, mesons (bosons) and .
baryons (fermions). These are now believed to be |
composites, i.e., the baryons (e.g., proton) are sup-
posed to consist of a hard core (parton) surrounded |
by meson clouds. Following Schwinger® we take '
two different values of magnetic charge, ie., 2f,
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and f, and their oppositely charged counterparts. As
the elementary particles are known to be magneti-
cally neutral, we envisage the following neutral
composites : mesons comprise (f,, — f,) and the
baryon hard core comprises (2 f, — fo» — fo), with
the reverse configuration for the anfiparticles. Let
us then consider the renormalisation eftects owing
to the presence of these magnetic charges. The
coupling censtant g involving magnetic charges
in analogy with the case of electric charges, can
be written as (using Eqg. 11):

fod _ \/ et _ 1
Ee a?fc ql/2"

Since the interaction is super-strong 1t is
adequate to consider only lowest order termsloO,
For mesons with two magnetic charges we will
have two vertices and for the baryon core three
vertices, i.e., from the three magnefic charges.
Accordingly, the renormalization factor for mesons

18
11V _ 1.
ﬁ(-n.TfE T dae’?

the number 2 being a weight factor. Similarly for
baryon core the three vertices give a factor

130 1
(Eﬁﬁ) ad/2 "

Thus for mesons and the parton (baryon hard core)
the renormalised frequencies will be given by

Om = (12)

™,
§

o = 5 @ (13)
1
Wp T L4372 W (14)

As explained beforel, a relativistic oscillator model
is needed for mesons and baryons. Thus for mesons
the ¢igen masses are given by:

m (ny,) = F;‘: [n, + 1% (15)

The baryons are composed of the parton hard core
and the meson clouds, each having independent
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oscillations. Thus the eigen masses are given by

- 2 Y
m (Ny, Ne) = ﬁme| .TEMH_;;___l_} - (‘_npﬂ?;ml) ].

(16)
The parton core being in the unexcited state we

can put n, — 0 and rewrite Eq. (16) as:

_ My + 1Y% n,
m(n,, Nyl = huw, [ » _;_{m,]

-

(17)
with n =1, for baryons and n. =0 for mesons.

The present mode! of hadrons is in conformity
with the Vigler model of elementary particlesll,
In this model the particles are assumed to be
relativistic droplets having six degrees of freedom.

In the present case we can think of quantized
rotation for the parton hard core and the meson
cloud each having a different centre of mass. This
will give rise to six degrees of freedom. Work
in this direction is in progress. It may be femarked
that the meson cloud is held to the parton by
strong interaction forces which are much weaker
than the super-strong forces holding the parton.

In the foregoing we have discussed the physical
basis of the formula developed earlier. 'The
previous paper gave the results of the computations.
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WOQULD like to talk about what seem to me
to be some outstanding puzzles which I call
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leptonic because they sll iavolve leptons in one
way or another. According to current conventional
wisdom, not all of them have to do with leptons,
as we shall see. I will first indicate these puzzles,
and then discuss bricfly some recent speculations
which bear on theml!™,

The oldest. most venerable of these is the nuwen
puzzle, sometimes phrused as why @ muon ]



