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HOPE to outline to you in this lecture briefly It is known that T2 can be 1-1 or — . However,

and rather imperfectly the method whereby in all the theories we deal with in practice, the choice
geometric transformations like rotations and space T2 =(—1)27 for a particle of spin j is made.
time translations are implemented as invariance- Whether this hypothesis is binding on us is not
transformations - in quantum mechanics, There are clear to me.
good reasons for such a study. The eXxistence of 3.
such symmetries implies that of all possible theories,
a certain subset sharing specific features 'is singled
out as acceptable. ~This is an enormous simplifi-
cation and in -fact leads to definite predictions.
Actually the significance of geomeiric. symmefries 15
deeper. Thus, the Hamiltonian which governs the
time evolution and hence the dynamics of the theory,
corresponds on exponentiation to time translation.
Thus, geometry in fact determines dynamics. It
may be noted in this context that the conservation
of angular or linear momentum is a consequence of
geometrical invariance principles which decide the
commutation relations of such operators with the
Hamiltonian.

This is a conference on unsolved problems.
field which is surveyed now contains perhaps the
unsolved problems in relativistic quantum mechanics.
Let us briefly review a few of these. -

1. Previous remarks suggest that the “correct”

Experimentally, we know that P and T are
not exact invariance properties, that is to say, that
they cannot be implemented in the usuval theories
with the proper commutation relations with the
Hamiltonian. Whether the preceding remarks have
a bearing on this. matter 1s. not clear, . If in fact
what is observed is the impossibility of implementa-
tion of these geometric transformations, the nature

of geometry itself may be different from the present
conce;pts.

4. There are a whole group of symmetries like
isospin and unitary spin transformations which do
not seem to originate in an intimate way {rom
geometry. There have been many attempts to bring
The these too into the geometric fold, but the successes
have been limited. In fact, there are negative
theorems (like McGlinn’s, Sudarshan and co-workers’,
O’Raifeartaigh’s, etc.) which indicate serious difficul-
ties for such a program within the present frame-

. * - . . " W{Jrk-
realization of geometric symmetries will lead In a _ . o
direct way to the “correct” theory. This task has 5. Finally we may' ask whether relativistic
certainly not been carried out quantum theory should really be formulated so as

2. The analysis of continuous geometric transfor- ‘o be genef‘aljly cﬂvaria}nt. The SUCCESS 1i1n this tfr.sk
mations leads to certain relatively definite rules on h*as l:::een limited. It is often C]Etl[l’led that gravita-
how they ate to be implemented. However, for tion is too weak to be relevant in particle physics.
discrete symmetries like parity P or time reversal T, This claim 1s ambiguouvs, cht us consider an exam-
the situation is more diffuse. In particular, that P ple from anocther context to illustrate the ambiguity.
is unitary and T anti-unitary is not a consequence At very low encrgies, we expect rielatmst-:c eﬂ:ects
of peneral principles alone, but requires the exira to be unimportant and nonrclativistic considerations

H I
assumption that there are no negative energy states. '© Sllm‘;f Cf’“iifct" 33¥ the 122; t?:f;f:i:c:tiglz
There are further ambiguities regarding T and PT. CSscRually says ihs 15 QW ' :
—————— = . as a symmetry transformation in a certamn class of
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nstitute of Science, Bangalore. its ecffects persist at low encrgics. Conceivably

Su : T _ IV
Cgmmifgg;tcd In_part by the U.5, Alomig Energy simitar offects could occur with general relativity.



150

Let us now review how geometrical transforma-
tions are implemented in quantum mechanics. The
material is almost entirely due to Wigner and to
Rargmann.

We will call the group of coordinate transforma-
ttons which we impose as an invariance group of
the theory the relativity group 2. Let us now

consider what 1s meant by invariance of a quantum
theory under S\

There are fundamentally two different ways we
can implement geometric transformations oo a
system. We can transform the coordinate system
leaving the object untouched or we can transform
the oObject leaving the coordinate system untouched.
The former view of the transformations is called
passive and the latter, active. The two views of
the transformations are equivalent only 1if there 1s
an appropriate uniformity of space and time. For
instance, consider a system in an exterpal electri-
cal field along the z-axis. Before rotations, let there
be a state Ay with angular momentum c¢omponent
equal to 1 along z and a state ¢ with angular
momentum component 1 along x. Then |(@, ‘1,0)12,
the probability for transition from ¢ to 1y, is un-
changed if the coordinates are rotated, but not if
the states are rotated. The vpoint of view we shall
adopt will always be the active ovne.

Consider the Hilbert space Sy"of the quantuia

theory under study. Under a coordinate transfor-
mation 7, each state i goes over into a state
U(r)y where the map U(r) is not necessanly linear
or anti-linear. Consider the set 52 of all coordinate

transformations r with the property that for each
rep, we can find a map U(r) such that
[(, 1‘0)1 = {{U(r)¢, U(r) ]} for all ¢, In Zr
This set is called the relativiry group of the theory.

U(r) is not unique since a stale 1 and a state
e¢'*qy describe the same physical situation. Let
us define a “phase operator” { depending on a
real functicn on « by

€ yw= e 1a() -

2,18 not a linear operator unless u(!q;) is inde-
pendent of .

The non-uniqueness of U(r) can be expressed
by stating that both U(r) and Q@ U(r) implement
the transformation r. We can use this ambiguity
to standardize the choice of U(r) in a particularly
convenient way.

Theorem 1: There exists a phase operator O,
[where & may depend on rl such that Q U(r) is
either unitary or anti-unitary.

Thus we shall assume hereafter that U(r) is
¢ither unitary or anti-unitary.
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We have yet to settle which transformations are
unitary and which are anti-unitary., To decide thig
question, we note first that both the operators U(r,)
U(r)) and U(r,ry) implement the same transforma-
tion r,r, on H Therefore, they may differ from
ecach other only by a phase:

U@ra)U(ry) = @ (rs, r))U(r, ry), |wlrg, re)]= 1.

Consider first those re G which can be con-
tinuously deformed to identity {(pure rotations.
translations, etc.). Then, there is a theorem which

for our purposes stafes esseatially that cach such
r 18 the square of another such s:

r = s2,
. . >
E.c. Each pure rotation r is of the form eif 7.3
> >
which has the “square root” s = e 8#/2In .3 which

too is a pure rotation.
From the above follows the important

Theorem 2 : For ecach r which can be conti-

nuously deformed to identity, U(s) is unitary,
For we have

U(r) = w(s,5) [U(s)]2
where @ 1s a phase. Regardless of the unitarity or

otherwise of U(s), [U(s)]2 is unitary so that U(r)
1s always unitary,

The third resnlt concerns the phase w.

Theorem 3 : If $p consists of the component of
the Poincaré group continuously connected to the

wenstity, then there exists e®2(").  a real, such
that if
U (r) = 200,
then
WU (r) = n(rar YU (ry, ry)
for all r e D where #»(r,, ry) is either +1 or — 1.

The set Spin the above theorem consists of pure

rotations, four-dimensional  translations, pure
Lorentz transformations and all possible composi-
tions of these transformations. The — 1 values 7 may
take cannot be removed by a thoice ©f phase. The
existence of half-integer spins is linked to the pos-
stbility that such minus signs are allowed.

Let us now consider those transformations which
are normally called discrete.  One such 1is parity

&, anotber is time reversal (5 We assume that

2 and T are in the relativity group . To

decide whether the corresponding oOperators on
S/ are unitary or anti-unitary, we have to examine

their relation to time translations V(7) ¢ S0, 1t
Is clear that

PVN@ P =V,
Ivey T =V(—n.
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Suppose that on &7/,
V(1) —> e,
P - P,

(:7 —> T

where H 1s the Hamiltonian.

P ef-Ht P-—-l — Eth,

T E-iHF T1 — E‘th
where it may be shown that no extra phases need
be inserted in the above equations. The basic
hypothesis required to decide the nature of P and T
is that the cigenvalues of H are all nonnegative and
that they are not all zero. This is a hypothesis
not related to geometrical principles and may be
gquestioned.

Now suppose that P is anti-unitary.
linear ferms in f give

P(GH?:) P~ = iH:

Then

Then the

or
PH P~ = —H.
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Therefore if Hi'j?: |7\ 1, then
HP o = — ]7\ Pt o,
Hence, P must be unitary.
Similarly, T must be anti-unitary.

The composition laws obeyed by P and T among
themselves and with the operators which occur in
theorem 3 have been discussed by Lurcat and Michel
and by Wigner at the Istanbul Summer School
(1564). .

Let me conclude by observing that there seem
to be several points regarding the implementation
of discrete symmetries which are not entirely clear.
In addition to those which were mentioned at the
beginning of the talk, we may note here that if
there were tachyons present, the spectrum of the
Hamiltonian will no longer be nonnegative. Then
the possibility arises of implementing for example
5P by an anti-unitary operator. To the best of

my knowledge there is no exhaustive analysis of
such possibilities in the literature.
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HE basic idea of the electromagnetic mass

difference is best expressed in the first two
sentences of the initial paper by Feynman and
Speisman! in 1934 ;: “Suppose all deviations from
isotopic spin symmetry are due solely to electro-
magnetic effects. Then such things as the mass
difference of charged and neutral mmesons, and the
neutron-proton mass difference would have to be
just electrodynamic.” The elegance of this hypo-

thesis is illustrated by the very small deviations (see
Table 1} in the masses of particles? belonging to
the same iso-multiplet, In the last eighteen years
several aitempts? have been made to calculate this
mass difference but all these calculations are either
incomplete or have other difficulties. In this talk
we shall briefly discuss how far we have progressed,
at least in principle, in calculating the electromague-
tic mass differences of elementary particles.

TABLE ]
Mass differences of neutral and charged particles with same r'xgsp:’r: -
} - 100 Am
. : . Isotopic Average mass QR = g1 QL = N\ e

Particle Spin and parity :pin F}) eV MeV o an

o
o, - 1 137214 26943 & 0037 3+4
K°, K+ 0- 1/2 495-815 5.95 & 13 0+79
n, 1/2F 1/2 938 -0 1-29344 £ +00007 0-14
5oz 12+ 1 118095 3.06 £ 16 0+26
>~ 3o 1 /o 1 119491 4:86 + 06 0- 41
- I+ 1/2+ ) 1'03.38 7.92 & 13 0+60
= B 1/g+ 1/2 13180 66 ot o7 0+50
K*>, Kot 1- 1 8917 6.1 1.0 063

p? gt 1- 1 765 2.4 %21 0+3!
A°, At 3/2+ 3/2 1230 2.y & 85 0-23
AT, At " 3/2 3/9 1936 70 108 0-61

Y*, Y q/9 \ 1385 G-x 20 :

by
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