Microbiology Department, A. M. PATEL.
B.P. Baria Science Inst., J. M. CHAUHAN.
Navsari, Gujarat, India, and W. V. KOTASTHANE.

Department of Plant M. V. DESAI.
Pathology and Bacteriology,
B.A. Agriculture College,
Anand, Gujarat (India),
April 27, 1968.

ORIGIN OF NEW CROP OF OOCYTES IN THE TELEOST, ANABAS SCANDENS (CUVIER)

The opinion with regard to the origin of new crop of oocytes is diverse and controversial.1,2 In immature specimens of *Anabas scandens* measuring 5-8 cm. in length a considerable number of small undifferentiated cells are found proliferated from the germinal epithelium (Fig. 1). These cells, as has been reported for *Phoxinus,*3 *Oryzias*4 and *Gobius,*5 are identical to those differentiated from the germinal epithelium of spent ovaries of adult *Anabas.* Their cell-boundary is indistinct; their nuclei are slightly irregular and each of them occupies almost the entire space of the respective cell. These undifferentiated cells soon divide mitotically to give rise to oogonia cells. In addition to these, some oogonia cells are also noticed differentiating occasionally from the remnants of the follicle cells of the pre-ovulatory corpus luteum (Fig. 2). Some of the oogonia derived either from the germinal epithelium of immature fish or from that of the spent one, after a period of rapid growth and differentiation, develop into fully grown functional eggs while the rest become atretic. Whether or not the oogonia differentiated from the follicle cells of pre-ovulatory corpus luteum develop into mature functional eggs needs further investigation. At any rate, the occurrence of the dual origin of oogonia in the ovary of *Anabas* appears to be interesting.

![Image of fish ovaries](image)

1. 1-2 Fig 1. Section of the ovary from an immature specimen showing small cells proliferated from the germinal epithelium. Brain's fluid, 8 µ, n.n. 2. 1-2 Fig 2. Section of atretic oocyte showing the differentiation of oogonia cells from the remnants of the follicular cells. Brain's fluid, 8 µ, n.n. 2. 1-2 Fig 3. Section of atretic oocyte showing the differentiation of oogonia cells from the remnants of the follicular cells. Brain's fluid, 8 µ, n.n. 2. 1-2 Fig 4. Section of atretic oocyte showing the differentiation of oogonia cells from the remnants of the follicular cells. Brain's fluid, 8 µ, n.n. 2. 1-2 Fig 5. Section of atretic oocyte showing the differentiation of oogonia cells from the remnants of the follicular cells. Brain's fluid, 8 µ, n.n.

Our thanks are due to Dr. Vijayam Srimamulu and Shri Ramakrishna Raju for their help in photomicrography. One of us (N. H. G. D.) is grateful to the Ministry of Education, for a Senior Research Scholarship.

Department of Zoology, *N. H. GOPAL DUTT.* Annamalai University, P. GOVINDAN.
Annamalainagar,
September 9, 1968.

Present address: Lecturer, Department of Zoology, University of Mysore, Mysore-6.