Germination of spores within the capsule after the fall of operculum indicates that light is possibly an important factor. This is also borne out by the development of green protonephal filament. Another conclusion that can be drawn is that the spores in mosses like *F. inclusa* or *H. subulaceum* possess a certain degree of independence. At least their initial growth is possible without drawing nutrients from the substratum.

Department of Botany, P. C. SRIVASTAVA.
C.M.P. Degree College, J. P. SRIVASTAVA.

OCCURRENCE OF EPIDERMAL SCLEREIDS IN THE PETALS OF *IPOMOEA OBSCURA* (L.) KER-GAWL.

According to Metcalfe and Chalk¹ a row of very characteristic ‘spicular cells’ occurs sporadically in the palisade and spongy portions of the mesophyll, particularly in the leaf of *Ipomoea* and occasionally in a few other genera of the family Convolvulaceae. During the course of anatomical and morphological studies in the genus *Ipomoea* the author observed the occurrence of sclereids in the upper epidermis of the petals of *Ipomoea obscura*. As far as the author is aware there is no reference to the occurrence and ontogeny of these sclereids. The present note describes their structure and ontogeny.

The epidermal cells are polygonal, isodiametric or elongated and have wavy anticlinal walls. The stomata are present on the lower epidermis and on the upper epidermis the sclereids are either solitary or in groups of 2-3. The sclereid shows a thick stratified cell wall and a lumen of irregular width. It is of two types: rod-like with wavy outline (Figs. 3 and 4) and polygonal or isodiametric (Figs. 5 and 6). In transection the sclereids appear oval or fusiform (Fig. 1). They also contain small spherical crystals of calcium oxalate.

During the ontogeny a few of the epidermal cells differentiate as sclereid initials (Fig. 2). They are either solitary or in groups of 2-3 (Fig. 2). They have prominent nuclei and dense cytoplasm. Gradually the cells begin to show sclerosis (Fig. 3) resulting in thick striated cell walls. Ultimately the nuclei degenerate and the cytoplasm disappears (Fig. 6). Occasionally the nucleus and the cytoplasm persist (Fig. 5). The pits have not been observed.

Figs. 1-6. *Ipomoea obscura* (L.) Ker-Gawl (Figs. 1-6, X 650). Fig. 1. Sclereids and sclereid initials in transection. Fig. 2. Sclereid initials in surface view of the epidermis. Fig. 3. Group of rod-like sclereids (Note nucleus and cytoplasm in one of the sclereids). Fig. 4. Solitary rod-like sclereid. Fig. 5. Solitary polygonal sclereid (Note nucleus, cytoplasm and small spherical crystals). Fig. 6. Group of polygonal sclereids.

The author is grateful to Dr. T. Ananda Rao for critically reading the manuscript. Thanks are due to Messrs. Abraham Raju, B. Vijay Gopal, T. N. R. C. Kurup and Miss N. V. Annamma for their help.

Department of Botany, J. A. INAMDAR.
Sardar Patel University, Vallabh Vidyananagar, Gujarat, October 17, 1967.