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seems to be buill up of leucocyanidin and epi-
catechin. Further details- could not be studied
due to lack of material.

To sum up the results, the leaves of Rhodo-
dendron formosum contain the following
known compounds: dihydrotaraxerone, ursolic
acid and taxifolin. It also contains two pos-
sibly new triterpenoids, and a proanthocyanidin
built up of leucocyanidin and epi-catechin.
Dihydrotaraxerone 1is a substance having a
saturated ring system and has not been known
so far to occur in any natural source; very
few compounds of this type are known to occur
in nature so far.
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THE ASYMPTOTIC THEORY OF THE BLUNTED WEDGE AT
HYPERSONIC SPEEDS

R. GOPINATH anp N. R. SUBRAMANIAN
National Aeronautical Laboratory, Bangalore-17 (India)

S a logical extension of the asymptotic

theory for the blunted flat plate and the
circular cylinder at hypersonic speeds, which
has been treated in great detail by Guiraud et al.,
Reoberto Vaglio Laurin, Freeman and others,-an
attempt is made to tI‘FHt the direct problem . of
the blunted slender wedge at M, = o0, by the
methed of matched asymptotic expansmns It
is assumed that the asymptotic shock wave
thepe corresponds to the sharp wedge solution
and a first correction to the shock shape has
been obtained in the presence of blunting,

It 1s found that the matching could be
effected only if the displacement thickness of
the entropy layer is zero. A global energy and
mass flow criteria have been employed to verify
that the first correction is the only one com-
patible with the assumed shock shape and the
given body and that this correction is found
to be due to the body and not the entropy layer,
There are two regions present in the flow, viz,
an ‘outer region’ where small - perturbation
solutions are valid and an ‘inner boundary-
layver-like region’ called the entropy layer (hot,
low-densily gas that crosses the strong portion
of the bow shock near the nose) where different
approximations are required. The entropy
layer plays an important role in the descrip-
tion of flows over hypersonic speeds and
renders the associated asymptotic patterns non-
sithjlar by its presence. An asymptotic
behaviour of the shock wave is writien ¢
priori with undetermined parameters which are
determined finally, so that the body coOrres-
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ponding to the shock is the one we wished to
obtain asymptotically.

~An analytical scheme has been developed to
obtain a uniformly valid solution of the com-
plete flow field. The equations for the sieady
flcw of an inviscid. perfect gas with constanti
specific heats in Von Mises co-ordinates (x, q,:) are
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where ,d is the shock wave angle. All the flow
variables have been non-dimensionalised with
respect to the freestream quantities, velocities
being referred to U _ density to » ., and pressure
with respect to ¢ V The distance variables
lhave been non-dlmenswnahsed with respect to
the bluntness parameter ‘d’. The shock wave
clope is assumed to be tlhe unknown and
expressed in the form

h (x) = (sin 8)¥7 (1.1.6)

and h(x) is developed  asymptotically along the
lines given by Guiraud- as

~ hy { I, )
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The leading exponent ¢, of this expansion 1=

teken to be zero based on the fact ‘that-the

(1.1.7)
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solution should tend to the sharp wedge solu-
tion asymptotically for downstream.
Boundary condition.—
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on the body where « is the semiwedge angle.
The outer variables are chosen-as (xr, w) where
w oo/ x and functions are denoied by an
asterizk. w=0(1) near the shock wave, The
inner variables are laken as (x, y) where
yr=0(1) near the wedge and functions are
denoted by ~. The flow variables are expanded
asyvimptotically as follows :

tana (1.1.8)

.  h i ¥ (e)
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The gencral equations of motion written in
cuter veriables (x,w) are as given below.
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substituiing the expansions {or the fow and
distance wvariables in the equations of mofion
and collecting coefficients of powers of x, we
respeetively get zeroth outer, first ‘outer, etc,
system of equations, The zeroth outer system
correspoends to the sharp wedge solution as given
by Yakura and they can be solved with the
help of the boundary conditions. It must be
remarked here that although the flow variables
are uniformly valid for all ‘»’, this is not true
{or the distance variable, Y, because the body
condition is not satisfied. Hence an inner
expansion has to be constructed, taking the
cntropy layer and the body condition into consi-
deration. From a study of the outer eguations
near «==0, it can be inferred that the leading
terms of the inner expansions for the fiow
voriables must be of the following form

f1l¢‘) ,
f-(;c .ﬁ)mf[}(!ﬁj s oB: vos

(1.4.1)

Asymptotic Theory of the Blunted Wedge at Hypersonic Speeds

Current
Science

L Yo (¥) S ;;;E.‘bl)

The differential equation for Y,%(w) is of
second order with a non-homogeneous term of
order (w-a;-1) on the right-hand side. In order
to construct the inner expansion for the flow
variables, it is imperative to know the
pehaviour of the outer functions near «— 0.
Since the perturbation in the shock shape is
dependeni upon the streamline displacement,
the behaviour of the distance wvariable Y is
studied near «w = 0. The second order differential
equation for Y,%(w) is as follows:

5{xl g~ Ax --e(1.4.2;

d-¥,* .. . dY,*
e - (Aw® 4 Bw o C) + 'Eii (Dw + E)
-+~ FYl* = Gw %1 4+ H (1.4.3)
where A, B...H are funciions of P *, D *...

etc. The general golution for Y,* can be written
i the form

Y * {w)~ (P + Qlog w) o~ (1.4.4)
near w=1{0. The constants of integration can
be obtained by matching. :

The choice ¢i the index in the first correc-
tion is decided from a consideration of the
g.obal mass flow conservation and cnergy
balance. It 1s fcund that a; = leads to =a
lcgarithmic term for the drag which neces-
citatcs a ‘log termy’ in the shock wave shape
and matching becomses difficult. e, = 2 is found
to be the right index. It must be remarked
here that this first correcticn to the shock shape
1s due to the body development and that the
citropy layer effects are of a higher order.
As it 13 not pessible to guess the complets
cuter expansions a priori the procedure adopted
i35 to start from the zeroth outer system of

cauatiens, then go ito the zeroth inner and
alterwards first outer and so0 on to effect
matiching,
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