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Due to the changing climate and frequent occurrence of 
extreme events, farmers face significant challenges. 
Precise rainfall prediction is necessary for proper crop 
planning. The presence of nonlinearity and chaotic 
structure in the historical rainfall series distorts the 
performances of the usual prediction models. In the 
present study, algorithms based on complete ensemble 
empirical mode decomposition with adaptive noise com-
bined with stochastic models like autoregressive integra-
ted moving average and generalized autoregressive 
conditional heteroscedasticity; machine learning tech-
niques like random forest, artificial neural network, 
support vector regression and kernel ridge regression 
(KRR) have been proposed for predicting rainfall series. 
KRR has been considered to combine predicted intrinsic 
mode functions and residuals generated by various algo-
rithms to capture the volatility in the series. The pro-
posed algorithms have been applied for predicting 
rainfall in three selected subdivisions of India, namely, 
Assam and Meghalaya, Konkan and Goa, and Punjab. 
An empirical comparison of the proposed algorithms 
with the existing models revealed that the developed 
models have outperformed the latter. 
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ACCURATE and precise forecasts of climatic variables are 
of utmost importance for an agriculture-based economy 
like India. Dutta et al.1 have provided probabilistic flood  
hazard maps using an ensemble method of hydrodynamic 
model and frequency analysis of water discharge. Lots of 
work can be found in linear and nonlinear domains of time-
series prediction using various conventional econometric 
techniques and statistical models, including autoregressive 
integrated moving average (ARIMA)2, random walk3, 
generalized autoregressive conditional heteroscedasticity 
(GARCH)4, error correction model5 and vector auto-
regressive models6. Singh et al.7 performed a copula-based 
regional and local analysis of meteorological drought in the 
Netherlands. ARIMA model is known for its performance in 
time-series prediction in linear dynamics8. However, this 
model cannot work satisfactorily in an environment where 

the phenomena of nonstationarity and nonlinearity distort 
the inherent functional form of the underlying series9. 
 Therefore, several artificial intelligence (AI) techniques 
have been utilized to tackle such complexities in a dataset. 
The most widely used techniques are artificial neural net-
works (ANNs)10,11 and SVM3. ANN has been proven to 
provide accurate prediction when used singly or combined 
with other methodologies. With a few exceptions, ANN-
based hybrid models outperform the singular ANN models 
as they help reduce prediction failures in many real-world 
problems12. A combination of various techniques can be 
an alternative to achieve more efficiency in forecasting13. 
 Wang and Ma14 proposed two ensemble strategies, i.e. 
random subspace (RS) and bagging (B), and utilized sup-
port vector regression (SVR) as the base model to propose 
the RSB–SVR model for credit risk assessment. Most neural 
networks (NNs) do not possess a memory for the individual 
inputs fed to them, and there is no state-space maintained 
for them15. 
 Changes in historical rainfall patterns may be due to cli-
matic change, which alters cropping patterns, causes extreme 
weather behaviours like drought and flood, and is proble-
matic for water resource management authorities16. So, 
rainfall risk mitigation is important for policymakers, hy-
drologists, and ultimately farmers. To improve water supply 
management, Sharma17 proposed seasonal to inter-annual 
rainfall probabilistic forecast. ARIMA and multiple linear 
regression (MLR) models have successfully been utilized 
to predict the rainfall trend18,19 and seasonal run-off20. AI-
based algorithms like ANN do not require sophisticated 
knowledge of the physical and hydrological behaviours of 
a watershed for forewarning about any extreme rainfall 
event. They can efficiently handle nonlinear input features21. 
Liyew and Melese22 studied several atmospheric attributes 
correlated with rainfall using machine learning (ML) algo-
rithms, like MLR, random forest (RF) and extreme gradi-
ent boosting (XGBoost). 
 It is evident from the literature that forecasting rainfall 
trends is mainly done through the use of regression and 
ML-based models. A drastic change in climatic conditions 
has altered rainfall trends over the years. To cope with the 
chaotic behaviour and nonlinearity in the historic rainfall 
pattern, a dire need is to develop data-driven models for fore-
casting rainfall with better precision. A multi-resolution 
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decomposition-based analytical tool is useful in separating 
large-frequency signals from smaller ones23 to determine 
climate-introduced volatility inside rainfall series. Being 
data-driven and self-adaptive in nature, complete ensem-
ble empirical mode decomposition with adaptive noise 
(CEEMDAN)-based decomposition is popular in time-series 
forecasting24. 
 The main objective of the present study is to propose a 
novel CEEMDAN-based ML algorithm, including ANN, 
SVR, kernel ridge regression (KRR) and RF, to predict 
rainfall in three subdivisions of India, namely Assam and 
Meghalaya (ASMEG), Konkan and Goa (KNGOA), and 
Punjab (PUNJB) during the period 1871–2016. RF, which 
is considered a rigorous bootstrapping aggregation frame-
work, can efficiently be implemented in the domain of 
time-series forecasting as a robust methodology. KRR can 
be used as an aggregation method for the forecasted results 
obtained from the decomposed series by the RF-based data 
intelligent model. 

Theoretical background 

Empirical model decomposition and improvements 

Based on the noise occurring due to the change in climatic 
conditions and human interventions over time, the decom-
position of rainfall time series provides better feature extrac-
tion for statistical modelling and AI techniques. Empirical 
mode decomposition (EMD) does not use any basis func-
tion, unlike wavelet-based decomposition, and is fully depen-
dent on the timescale properties of the noisy time series 
for decomposition. The relevance of its use is in the trans-
formation of nonstationary and nonlinear signals into sta-
tionary and linear ones. However, the EMD proposed by 
Huang et al.25 has the problem of intrinsic mode mixing 
due to the intermittent signals. CEEMDAN, proposed by 
Torres et al.26 is an improvement in the succession of 
EMD-based decomposition after ensemble empirical mode 
decomposition (EEMD)27 and complementary EEMD 
(CEEMD)28. CEEMDAN-based decomposition solves the 
problem of mode mixing. 
 EMD decomposes a signal x(t) into several intrinsic 
mode functions (IMFs). First, cubic spline interpolation is 
applied to draw the upper and lower envelopes by joining 
consecutive maximas and minimas (extremas) respectively. 
The mean envelopes M(t) is the average of each of the upper 
and lower envelopes. If this mean envelope is subtracted 
from the original signal, one can get the intermediary signal 
as h1(t). A decomposed signal is considered an IMF if it 
fulfils the following two conditions: (i) During the whole 
range of time-series signals, the number of local extremas 
and zero-crossing points must be equal, or the difference 
may be at most one. (ii) The local mean at a certain point, 
i.e. the average of the upper and lower envelopes, must be 
zero. 

 To mitigate the mode-mixing effect induced by the 
EMD process, Wu and Huang27 proposed the addition of 
normal white noise (WN) with the original signal before 
decomposition to make it smoothly distributed at the ex-
treme points throughout the band and introduced the EEMD 
process. However, EEMD causes another problem of in-
completeness in the original signal. Due to the addition of 
noise to the original signal, error is generated in the recon-
struction process, which is the difference between the orig-
inal and reconstructed signals. CEEMDAN was introduced 
by Torres et al.26 by adding finite adaptive WN based on 
the EEMD process to overcome the problems of incom-
pleteness in the reconstruction process. 
 First, a standard normal WN [vi(t)] is added to x(t). The 
signal at the ith iteration of the EMD process is computed 
as 
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The intermittent IMF, i.e. 1IMFi  is obtained by EMD at the 
ith iteration. Therefore, the first IMF is calculated as the ave-
rage of all the intermittent IMFs obtained in 𝐼 number of 
iterations as 
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and the residual is r1 = x(t) – IMF1. This process is continued 
till we end up with a signal (rJ) which is a monotonous 
function and cannot be further decomposed by the EMD 
method. Then, the original signal can be reconstructed as 
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Random forest 

Random forest is a decision tree (DT)-based ML approach. 
It is based on the popular bootstrapping and bagging pro-
cedure29,30. RF randomly chooses a bagging method to 
identify and adopt a feature. A node is forked by choosing 
the most important and dominating features or predictors. 
This bagging helps improve the result without overfitting 
the model31. Moore et al.32 have utilized RF in hydrological 
and environmental management applications. Bootstrapping 
ensembles (ntrees) are generated using the input predictor 
variables, where n indicates the number of trees generated 
in the bootstrapping process. Maximum predictors split is 
chosen by defining a random input variable sample repre-
sented as mtree. All the predictions from the bootstrapping 
ensembles are combined (bagged) to get the forecast of 
the response variable itself. 
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Kernel ridge regression 

Ridge regression was first introduced by Hoerl and Ken-
nard33 to combat the multicollinearity problem in the MLR 
models. KRR is a combination of kernel trick with ridge 
regression. A small bias (0 < k ≤ 0.3) is added with the dia-
gonal elements of the correlation matrix of the predictors. 
As the diagonal elements of this matrix are one, they may 
be considered a ridge. The graphical method ridge trace is 
used to find the appropriate value of k for which the mean 
square error (MSE) of the ridge estimators becomes less 
than the ordinary least square (OLS) estimators. In the 
ridge trace graph, OLS estimates of the regression coeffi-
cients are plotted along the vertical axis against the k val-
ues on the horizontal axis (Figure 1). k values vary from 0 
and increase gradually. With the increase of k, regression 
coefficients vary drastically at first and then get stabilized 
around the X axes. The smaller the bias, the better the esti-
mate with stabilized regression coefficient estimates. 

Proposed algorithm 

Figure 2 presents a flowchart of the proposed approach to 
predict time-series data. The original series is modelled 
using ARIMA and GARCH models, and the corresponding 
prediction is obtained. The noise obtained from fitting the 
above models is again fitted by ML techniques, like ANN, 
SVR and RF, and the predicted values are computed. Dif-
ferent ML techniques have been used for modelling the 
CEEMDAN-decomposed subseries. Predictions obtained 
for every decomposed series from the ML models are 
combined together to get final predictions. KRR is used to 
formulate a hybrid CEEMDAN_RF_KRR model utilizing 
the predictions of the subseries obtained from the RF 
method. 
 The steps of the proposed algorithm are summarized be-
low: 
 Step 1: The underlying series is predicted using sto-
chastic models like ARIMA and GARCH, and ML techni-
ques like ANN, SVR and RF. 
 Step 2: CEEMDAN decomposition is carried out on the 
original series to compute IMFs and residual series. 
 Step 3: ANN, SVR and RF are applied on individual 
IMFs, and residual series are obtained in step 2 to result in 
CEEMDAN_ANN, CEEMDAN_SVR and CEEMDAN_RF. 
 Step 4: The predicted series obtained through RF ap-
plied on each of the IMFs and residuals are considered as 
input in KRR to result in the hybrid CEEMDAN_RF_ 
KRR model. 
 Step 5: The prediction accuracy is compared empirically 
for each of the above-mentioned algorithms. 
 Table 1 shows a comprehensive set of models utilized 
to predict the series under consideration. KRR with linear, 
polynomial, radial basis function and sigmoid kernel has 
been represented by KRR_Lk, KRR_Pk, KRR_Rk and 

KRR_Sk respectively. The CEEMDAN-ML models depic-
ted in Table 1 are CEEMDAN_ANN, CEEMDAN_SVR 
and CEEMDAN_RF to represent CEEMDAN decomposi-
tion-based ANN, SVR and RF models respectively. KRR 
works as a powerful linkage in the CEEMDAN-based 
KRR-RF hybrid models, i.e. CEEMDAN_RF_KRR_Lk, 
CEEMDAN_RF_KRR_Pk, CEEMDAN_RF_KRR_Rk and 
CEEMDAN_RF_KRR_Sk. 

Empirical analysis 

Annual rainfall data of the three subdivisions of India, 
ASMEG, KNGOA and PUNJB were obtained from the 
Indian Institute of Tropical Meteorology (IITM), Pune 
(https://www.tropmet.res.in) for the period 1871 to 2016. 
These subdivisions represent northeast, southwest and 
northwest India respectively (Figure 3). 

Data description 

Descriptive statistics are presented in Table 2 for the his-
torical annual rainfall data of the three subdivisions. The 
ASMEG subdivision, in particular, receives rainfall of 
about 132.3 cm. The data are positively skewed and lepto-
kurtic. The variation in the dataset represented through 
coefficient of variation (CV) depicts an 11% disparity 
compared to the average rainfall. The KNGOA subdivi-
sion received a minimum rainfall of 130.30 cm in 1899 
and a maximum rainfall of 397.50 cm in 1878. The average 
rainfall in this subdivision over a period of 146 years was 
258.20 cm, with a standard deviation of 50.10 cm. The 
rainfall is negatively skewed and leptokurtic in nature. 
Among the three subdivisions discussed here, minimum 
rainfall was received in PUNJB (23.32 cm). The maxi-
mum rainfall received in the PUNJB subdivision was also 
lower than the minimum rainfall received in the other two 
 
 

 
 

Figure 1. Ridge trace. 

https://www.tropmet.res.in/DataArchival-51-Page
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Figure 2. Proposed CEEMDAN-ML algorithm. 
 
 

 
 

Figure 3. Rainfall subdivisions selected for analysis. 
 
 
subdivisions. However, the variation in rainfall was the 
highest in PUNJB among all other subdivisions, with a 
CV of 28.09%. The skewness and kurtosis were also the 
highest in rainfall patterns in the PUNJB subdivision. It 
can be seen that the historical annual rainfall in PUNJB is 
highly positively skewed and leptokurtic in nature. 

Table 1. Set of models used for prediction 

Stochastic model     ML     CEEMDAAN-ML 
 

ARIMA ANN CEEMDAN_ANN 
GARCH SVR CEEMDAN_SVR 
 RF CEEMDAN_RF 
 KRR_Lk CEEMDAN_RF_KRR_Lk 
 KRR_Pk CEEMDAN_RF_KRR_Pk 
 KRR_Rk CEEMDAN_RF_KRR_Rk 
 KRR_Sk CEEMDAN_RF_KRR_Sk 

 
Table 2. Description of data 

Statistics ASMEG KNGOA PUNJB 
 

Minimum (cm) 178.0 130.27 23.32 
Maximum (cm) 310.3 397.50 119.55 
Mean (cm) 234.0 258.20 62.38 
SD (cm) 25.77 50.10 17.52 
CV (%) 11.01 19.40 28.09 
Skewness 0.18 –0.06 0.80 
Kurtosis 0.02 0.22 0.51 
Shapiro–Wilk 0.991 0.990 0.955*** 

***Indicates significant at 1% level of significance. 
 
 The Shapiro–Wilk test was conducted to check whether 
the series under consideration were normal or not. The results 
in Table 2 confirm that historical rainfall data of ASMEG 
and KNGOA subdivisions are normally distributed, but 
the rainfall in PUNJB subdivision is non-normal in nature. 
The stationarity of the rainfall series has been ensured by 
means of the augmented Dickey–Fuller (ADF) test. 

Data decomposition 

MATLAB and R software were used for data analysis. 
Figure 4 a–c represents the CEEMDAN decomposition of 
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Figure 4. Original and CEEMDAN-decomposed annual rainfall (1871–2016) series of (a) ASMEG, (b) KNGOA and (c) PUNJB. 
 
 
the subdivisional rainfall. Six IMFs and one residual were 
generated by the CEEMDAN process for rainfall data in 
the subdivisions of ASMEG and KNGOA, whereas for the 
PUNJB subdivision, seven IMFs and one residual were 
produced. 

Performance measure 

To empirically compare the performance of the proposed 
algorithm with that of the existing methods, a number of 
statistical indicators as discussed below were used.  
 Root mean square error 
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Here et and Y  are the residuals and the mean of actual se-
ries respectively. N denotes the number of observations 
used for validation of the models. 
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Results and discussion 

The rainfall series was split into training and testing sets 
in the ratio 90 : 10. The training sets were fitted with various 
stochastic and AI-based models. In the CEEMDAN-RF-
KRR hybrid approach, the decomposed series were first 
predicted using RF, and then each predicted series was 
transferred to the KRR model to predict the original series. 
The number of trees was set as 500 for training the RF for 
the case, and accordingly, the number of split predictors 
was determined after the completion of the training phase. 
ANN models have been trained with a learning rate 0.4 
and one hidden layer with five neurons. MSE was used as 
the loss measure for each of them. 
 The results of model validation for both the stochastic 
models and ML techniques, including the decomposition-
based ML methods, are provided for ASMEG, KNGOA 
and PUNJB in Tables 3–5 respectively. It may be seen 
that KRR_Pk outperforms the other stochastic, ML or de-  
 
 

Table 3. Validation results of all the models in ASMEG 

Model RMSE RRMSE MAE MAPE 
 

ARIMA 36.83 17.52 31.00 13.13 
GARCH 36.85 17.53 31.02 13.13 
ANN 30.73 14.62 26.66 12.02 
CEEMDAN_ANN 18.47 8.79 15.34 7.27 
SVR 35.22 16.76 26.93 11.43 
CEEMDAN_SVR 14.90 7.09 13.01 6.22 
RF 35.26 16.78 29.11 12.42 
CEEMDAN_RF 21.21 10.09 18.71 8.69 
KRR_Lk 52.05 24.77 45.10 17.64 
KRR_Pk 53.81 25.60 46.61 18.10 
KRR_Rk 49.93 23.75 42.62 16.86 
KRR_Sk 49.55 23.57 42.54 16.86 
CEEMDAN_KRR_RF_Lk 39.65 18.86 33.38 13.91 
CEEMDAN_KRR_RF_Pk 51.65 24.57 44.57 17.50 
CEEMDAN_KRR_RF_Rk 50.34 23.95 43.19 17.06 
CEEMDAN_KRR_RF_Sk 48.91 23.27 41.82 16.63 

 
 

Table 4. Validation results of all the models in KNGOA 

Model RMSE RRMSE MAE MAPE 
 

ARIMA 59.29 20.03 45.92 17.22 
GARCH 64.32 21.73 51.52 20.02 
ANN 61.76 20.86 48.06 18.36 
CEEMDAN_ANN 43.99 14.86 35.06 13.46 
SVR 66.10 22.33 52.68 20.84 
CEEMDAN_SVR 43.15 14.58 33.48 12.49 
RF 62.68 21.17 49.52 18.59 
CEEMDAN_RF 40.21 13.58 33.17 11.43 
KRR_Lk 58.54 19.78 51.81 18.51 
KRR_Pk 49.12 16.59 44.20 15.33 
KRR_Rk 51.91 17.54 42.86 15.23 
KRR_Sk 54.32 18.35 44.56 15.90 
CEEMDAN_KRR_RF_Lk 65.20 22.02 52.60 20.57 
CEEMDAN_KRR_RF_Pk 52.06 17.59 42.82 15.01 
CEEMDAN_KRR_RF_Rk 53.14 17.95 43.37 15.37 
CEEMDAN_KRR_RF_Sk 54.32 18.35 43.82 15.72 

composition-based ML models to predict rainfall in the 
PUNJB subdivision. CEEMDAN-based decomposition also 
enriches prediction performance of ANN and RF models. 
The CEEMDAN_ANN and CEEMDAN_SVR methods pro-
vide the best prediction of rainfall in the ASMEG subdivision. 
CEEMDAN_RF is the best-performing model for predicting 
rainfall in the KNGOA subdivision. CEEMDAN_ANN and 
CEEMDAN_SVR models can also attenuate the predic-
tion of annual rainfall in the KNGOA subdivision. 
 MAPE values obtained from CEEMDAN-ANN and 
CEEMDAN-RF models were less than 10%, indicating bet-
ter prediction by this decomposition-based ML algorithm 
for the rainfall dataset of the ASMEG subdivision. 
 SVR performed well in predicting rainfall in the PUNJB 
subdivision, which is characterized by high volatility. More-
over, based on the MAPE value, CEEMDAN_SVR per-
formed better for PUNJB. KRR methods also performed 
well in this dataset, having a non-normal distribution. 
Overall, in terms of MAPE, it can be mentioned that the 
gain in prediction accuracy in the best-fitted model over the 
usual ARIMA model was more than 50%, 30% and 25% 
respectively, in the ASMEG, KNGOA and PUNJB sub-
divisions. Figure 5 depicts the actual versus predicted 
rainfall using best-fitted models for the three subdivisions. 

Conclusion 

In this study, several stochastic and AI-based models have 
been used to predict rainfall in three subdivisions of India 
representing the northeast, southwest and northwest regions 
respectively. Novel CEEMDAN decomposition-based hy-
brid AI models have also been introduced to attain greater 
efficiency in predicting rainfall. The residuals have been 
used to validate the performance of various models. In total, 
16 models have been utilized to predict the rainfall series. 
Various validation measures, namely RMSE, RRMSE,  
 
 

Table 5. Validation results of all the models in PUNJB 

Model RMSE RRMSE MAE MAPE 
 

ARIMA 15.10 28.20 12.75 20.10 
GARCH 15.11 28.22 12.76 20.12 
ANN 15.46 28.87 13.64 21.35 
CEEMDAN_ANN 34.10 63.70 33.45 27.48 
SVR 12.94 24.17 11.83 19.69 
CEEMDAN_SVR 30.62 57.18 29.88 14.81 
RF 15.50 28.95 14.33 22.14 
CEEMDAN_RF 32.58 60.85 31.77 16.39 
KRR_Lk 12.80 23.90  9.65 20.17 
KRR_Pk 10.86 20.29  7.88 15.22 
KRR_Rk 11.26 21.03  8.29 16.22 
KRR_Sk 11.79 22.02  8.65 17.15 
CEEMDAN_KRR_RF_Lk 13.57 25.35 10.28 22.25 
CEEMDAN_KRR_RF_Pk 11.56 21.59  8.36 16.19 
CEEMDAN_KRR_RF_Rk 11.69 21.83  8.53 16.71 
CEEMDAN_KRR_RF_Sk 11.84 22.10  8.70 17.25 
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Figure 5. Actual versus predicted plot of annual rainfall in the three subdivisions of India. 
 
 
MAE and MAPE were used to compare the prediction accu-
racy of different models. It has been found that CEEMDAN-
based decomposition is efficient in capturing the rainfall 
pattern in the datasets. The CEEMDAN-based decomposi-
tion followed by the application of ML algorithms resulted in 
significant improvement in the prediction accuracy. 
 The proposed algorithm may also be used in predicting 
high-frequency rainfall data. Other decomposition techniques 
like wavelet can be employed to preprocess the data before 
modelling in future studies. 
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