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India’s metropolitan cities have been growing rapidly 
for many years. To keep geographical information ac-
curate and current, it is essential to update GIS maps. 
Traditionally, experts have analysed new data sources 
and made necessary adjustments to the maps manually. 
Such manual monitoring is a laborious test both eco-
nomically and in terms of workforce. Geographical data 
are transformed into digital maps by GIS mapping, 
making it simple to spot patterns, trends and linkages. 
Extraction of humanmade objects, such as roads, water 
bodies and buildings, from remotely sensed imageries 
holds significance in various urban applications, including 
urban land-use and land-cover assessment, geographi-
cal database updates and change detection. Cartosat-3 
data can provide detailed information about buildings 
and their changes over time. Additionally, GIS maps 
are manually updated by rasterizing vector data. The 
suggested system consists of ResNet and U-Net architec-
ture as its core. The bi-temporal images are initially co-
registered to completely align 2020 and 2022 satellite 
images with respect to the coordinates. Buildings are 
then segmented using U-Net with ResNet as the back-
bone, and the resultant segments are converted from 
raster to vector format. The suggested model has been 
tested and trained using the Chandigarh dataset, which 
resulted in an accuracy of 95%. 
 
Keywords: Change detection, digital maps, geographical 
data, remote sensing, urban planning. 
 
URBAN planning relies heavily on buildings, water bodies 
and roads. They significantly impact various aspects of 
urban development, including land use, transportation, in-
frastructure and the overall liability of urban areas. Infor-
mation on these objects is crucial for transportation, urban 
land registry and disaster/hazard risk assessment, to name 
just a few applications1,2. For urban planners, object seg-
mentation from satellite images is a useful tool. 
 ‘Satellite imagery’ is a term used to describe images of 
the Earth or other planets captured by humanmade satel-
lites. Higher resolution for remotely sensed images, parti-

cularly satellite images (e.g. Cartosat-3 images have a reso-
lution of 0.28 m), is now possible due to the rapid ad-
vancement of sensor technology. In the previous 20 years, 
numerous studies have been conducted to accurately extract 
aspects from these incredibly exact images, such as build-
ings, roads and water bodies. If the satellite imagery has 
been spatially corrected to ensure good alignment with other 
datasets, it can be merged with vector or raster data in a 
geographic information system (GIS)3,4. 
 The very high resolution satellite (VHRS) images are 
raster images in the PNG, JPG and GeoTIFF formats5. The 
file format GeoTIFF has a three-letter extension (.tif). It is a 
specific kind of TIFF file that includes GeoTIFF tags as the 
spatial referencing data for geo-referenced raster imagery. 
Vector data are used to generate the GIS maps. Since vector 
data offer a more precise and accurate representation of the 
real-world characteristics and objects the maps intend to 
represent, they are crucial for updating GIS maps6. 
 To enable accurate and insightful analysis when working 
with multiple satellite images obtained at various periods 
or from various sensors, it is crucial to co-register or align 
them spatially. The geometrical disparities between images 
are addressed via co-registration, allowing for efficient 
comparison, integration and analysis. Geometric distortions 
are corrected, spatial consistency is maintained, and satellite 
images are aligned to a common reference system through 
co-registration. It also enables accurate comparison, change 
detection, fusion and integration of multiple datasets by 
bringing images into a common reference frame7,8. 
 Deep learning methods for updating GIS maps can offer 
insightful information and improve the precision and effec-
tiveness of the mapping process. Convolutional neural 
networks (CNNs)6,7 and recurrent neural networks (RNNs) 
are examples of deep learning algorithms that can be applied 
to a variety of tasks in GIS map updating, such as semantic 
segmentation, object detection and image classification. 
This automatic analysis accelerates the map-updating process 
and requires less human labour, enabling more frequent 
updates and real-time data8. 
 An encoder and a decoder network make up the com-
mon picture segmentation architecture known as U-Net. 
A deep learning architecture called ResU-Net (Residual 
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U-Net) can be used to update GIS maps9. U-Net (a convo-
lutional neural network architecture) and residual networks 
(ResNet) are combined in the ResU-Net design. An encoder 
and a decoder network make up the common image seg-
mentation architecture known as U-Net. The encoder ex-
tracts features from the input image at various abstraction 
levels, and the decoder reconstructs the segmented image 
by applying these features. The introduction of residual 
connections by ResNet, on the other hand, helps solve the 
vanishing gradient issue during training and enables the 
efficient learning of deep architectures. 
 The objectives of the present study are as follows: 
 
•  To develop an automated and efficient approach to up-

date GIS maps with the change detection of objects. 
•  Assess the performance of the enhanced ResU-Net 

model that performs change detection of building ob-
jects. 

•  Analyse the impact of different input data sources. 
•  Assess the generalization ability of the model. 
•  Provide recommendations and guidelines. 

Literature survey 

Change detection in GIS maps is done using deep learning 
approaches, such as ResNet and U-Net models. The authors 
demonstrated the effectiveness of utilising an ensemble of 
ResNet and U-Net models for precise change detection 
and compared the performance of several deep-learning 
model10. Researchers have suggested a method for detect-
ing building changes that combines GIS data with deep 
learning models like ResNet and U-Net. They have empha-
sized the advantages of utilizing ResNet for feature extrac-
tion and U-Net for precise segmentation when identifying 
changes to buildings11. Studies have compared various deep 
learning models, including ResNet and U-Net, for auto-
matic change detection in GIS maps12. The authors evalu-
ate the performance of different models and discuss the 
advantages of using an ensemble of ResNet and U-Net 
models for accurate and robust change detection. An en-
semble learning method that combines various deep learn-
ing models for change detection in GIS data has also been 
suggested13. The study explored how ResNet and U-Net 
models can be used in an ensemble framework and showed 
superior building change detection. U-Net and ResNet 
models are used to semantically segment buildings in 
high-resolution satellite data. The significance of precise 
segmentation in the update process has been underlined, 
and the potential use of these models for developing 
change detection in GIS maps is addressed14. For water 
body extraction, a multi-task fully convolutional network 
(FCN) has been proposed. The method included border 
delineation as well as binary categorization of water and 
non-water areas, resulting in the precise mapping of water 
bodies. A convolutional neural network (CNN) architecture 
was suggested in this study for the semantic segmentation 

of water bodies. The model distinguished water bodies from 
satellite images with good accuracy15. For water body extrac-
tion, this work presented a deep residual U-Net architecture. 
To increase segmentation accuracy and manage complica-
ted water body forms, the model used residual connections 
and U-Net structure16. For segmenting water bodies, a 
deep active learning system has been proposed. The method 
successfully reduced annotation efforts while retaining 
good segmentation accuracy by combining deep learning 
with active learning techniques17,18. 

Study area for training dataset generation 

Chandigarh is known for its well-planned infrastructure, 
modern architecture and beautiful urban design. Its overall 
area is about 44 square miles, making this capital city one 
of the smallest Indian states. Chandigarh is situated 100 km 
east of Ludhiana and 260 km north of New Delhi, the natio-
nal capital (Figure 1 a). Geographically, it is situated at 
76.7794° E long. and 30.7333°N lat. 

Study area for validation dataset generation 

The proposed model was validated using Hyderabad. As a 
fast-growing city, Hyderabad has undergone substantial 
urban development and expansion throughout the years. 
The footprint of buildings in Hyderabad varies by area and 
neighbourhood. The city is situated at 17.366°N lat. and 
78.476°E long. (Figure 1 b). 

Data preparation 

Data preparation is necessary regardless of the expected 
model performance. To improve model performance, data-
sets must be carefully prepared before use. The dataset 
was ordered from the Indian Space Research Organizations 
(ISROs) Bhoonidhi Portal, and QGIS was used to label the 
satellite image. ISRO has built the high-resolution Cartosat-3 
Earth monitoring satellite. By combining high-resolution 
panchromatic images, the pan sharpening approach, as 
shown in Figure 2, improves the spatial resolution of multi-
spectral imaging. Table 1 presents list of data and date of 
acquisition. 
 Data-splitting is the process of breaking up the annotated 
dataset into subsets for training, validation and testing. 
The validation set is used for model selection and hyper-
parameter tweaking, while the training set is used to train 
the deep learning model19,20. The performance of the model 
on untested data is assessed using the testing set. The dis-
tribution of building instances throughout the subgroups 
should be carefully considered. 

Materials and methods 

This section gives a summary of the approach, methods, 
dataset and suggested architecture for the planned system. 
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Figure 1. Study area for (a) training and testing and (b) validation. 
 

 
 

Figure 2. a, Image enhancement (pan-sharpening). b, Radiometric correction. c, Geometric correction and coregistration. 
 
Architecture 

Figure 3 presents the enhanced ResU-Net model proposed 
in this study for performing change detection of buildings. 
The U-NET architecture and deep residual learning are both 
utilized by ResU-Net. For building extraction tasks, the 
ResU-Net design combines the strength of residual networks 
(ResNet) with the well-liked U-Net architecture. The U-
Net architecture with a ResNet encoder employs a 7 × 7 
input kernel size, three initial filters, and a max pooling 
size of 2 × 2 for down sampling. The right identity block 
characterized by its ability to maintain the dimensions of 
the input. By utilizing residual blocks, a deeper network 
can be constructed without dealing with vanishing or ex-
panding gradient issues. 

 It also makes network training simple. Rich skip con-
nections in ResU-Net facilitate greater information flow 
between layers, facilitating better gradient flow during train-
ing. Similar to a U-Net, ResU-Net is made up of a bridge 
linking the encoding and decoding networks. Two 3 × 3 
convolutions are used by U-Net, and each is followed by a 
ReLU activation function. In ResU-Net, a pre-activated 
residual block fills the place of these layers. The network 
is assisted in learning an abstract representation by the en-
coder, which takes the input image and runs it through sev-
eral encoder blocks. The pre-activated residual block is used 
to assemble the three encoder blocks. The output from each 
encoder block serves as a skip connection for the associated 
decoder block. The first 33 convolution layers employ a 
stride of 2 in the second and third encoder blocks to  
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minimize the spatial dimensions (height and width) of the 
feature maps. When the stride value is 2, the spatial dimen-
sions are cut in half, from 512 to 256. 
 ResNet50, the suggested approach, accepts input of 
512 × 512 with three filters. Convolutional layers are used 
here for down sampling with a stride of 2, which results in 
halving the image size and doubling the filters. The con-
volutional layer conv_1, which is 3 × 3 and has a stride of 
2, receives the input first. The max pooling layer, which is 
2 × 2 and has a stride of 2, is then fed to the input. The 
conv_1 layer sends the output to the conv2_x layer. Each 
residual block that makes up the layer is constructed from 
two 3 × 3 convolutional layers employing batch normali-
zation and ReLu activation functions; they are all connec-
ted by a shortcut connection. By acquiring more intricate 
information from the input image, networks can increase 
accuracy. This is done by repeatedly stacking residual 
blocks. 
 The energy function is derived from the pixel-by-pixel 
ReLu activation function and the Tversky loss function of 
the final feature map. 
 The segmentation performance of the network improves 
with decreasing values of the loss function, as the predicted 
 
 

Table 1. List of data and date of acquisition (DOA) 

Sat Id. Place   Sensor DOA 
 

Cartosat-3 Chandigarh  PAN 5/12/2020 
   MX 5/12/2020 
   PAN 25/05/2022 
   MX 25/05/2022 
 Hyderabad  PAN 14/11/2020 
   MX 14/11/2020 
   PAN 20/12/2022 
   MX 20/12/2022 

 
 
Table 2. Comparison of the existing models with the proposed ResU- 
  Net model  

Parameters Existing model Modified model 
 

Channels in input image 1 3 
Shape of input image 256 × 256 512 × 512 
Strides 1 2 
Input kernel size 3 × 3 7 × 7 
Initial no. of filters 64 3 
Number of trainable parameters 
 in a neural network model 

52 million 73 million 

Pooling type PSP Max pooling 
Size of maximum pooling at  
 every layer 

2 × 2 2 × 2 

No. of layers 27 U-Net 50 U-Net 
Channels in output image 1 1 
Activation function Sigmoid ReLu 
Loss function Dice Binary cross  

Entropy loss 
Encoder and decoder blocks 3 5 
Dilation rate 1 1 
Optimizer ADAM ADAM 
Channels in output image 1 1 

mask matches the ground truth mask more closely. The 
weight map enables the network to concentrate on separat-
ing boundary-adjacent pixels, which is more crucial for 
precise segmentation. Table 2 provides the details of the 
modified ResU-Net model proposed in this study. 
 
 

 
 

Figure 3. ResU-Net architecture. 
 
 

 
 

Figure 4. Flow chart of the proposal model. 
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Figure 5. Polygon to raster and reclassify raster. 
 

 
Methodology 

The numerous components that make up the proposed 
model are discussed in this section. Figure 4 presents the  
methodology of the proposed system, which consists of 
data preparation, co-registration, pre-processing, semantic 
segmentation, post-processing, geo-referencing, convert-
ing raster data to vector data, change detection and updat-
ing of GIS maps. 
 
Noise removal: For noise removal, a Gaussian filter is used. 
By reducing or eliminating noise from the satellite data, 
Gaussian noise reduction techniques attempt to improve 
the image quality and its usability for a variety of applica-
tions. These methods efficiently reduce noise while retain-
ing crucial image information by utilizing statistical aspects 
and filtering strategies. The image is successfully blurred 
during the convolution process, which also reduces high-
frequency noise. 
 
Labelling of data: This is a crucial step in preparing datasets 
for deep learning models. The size, complexity, resource 
availability and required level of accuracy are only a few 
examples of the variables that influence the choice of the 
labelling approach. QGIS is used to label data to prepare 
datasets for deep learning applications, even though it was 
mainly developed for spatial data analysis and mapping.  
 
Polygon to raster and reclassify raster: Buildings were 
manually digitized, and the resulting footprints were used 
to turn the polygons into raster images, which were then used 
to create environments for the satellite image. In this phase, 
the geographic extent, coordinate system, cell size and 
spatial extent were all guaranteed. The rasterized building 
footprints were classed as ‘0’ or ‘255’, where ‘0’ denotes 
a non-building class and ‘255’ denotes a building class. 
This resulted in the generation of data marked with refer-
ences to the building and non-building classes (Figure 5). 

Image splitting: Image splitting in building extraction tasks 
enables more effective analysis of large and complex 
scenes, improves model performance and enhances the ex-
traction of detailed building information. A feature or library 
called Patchify enables users to automatically divide an 
image into smaller patches or tiles. It offers a practical 
method to make patches of a specific size from the input 
image. 
 

Semantic segmentation: Segmenting buildings is done using 
a modified U-Net design. The model was first trained using a 
27-layer U-Net architecture. However, while forecasting 
the results, land and buildings were taken into account as 
buildings, which was reflected in the anticipated binary 
masks. ResNet50 is therefore considered as the encoder 
block for the U-Net architecture, and the model was trained 
as described above in order to enhance feature extraction 
and operate on a deeper network. 
 

Regularize building footprint: The post-processing procedure 
known as regularizing building footprints after deep learn-
ing attempts to hone and enhance the precision of building 
footprint predictions produced from deep learning models. 
Although deep learning models may successfully identify 
and extract building footprints from aerial or satellite data, 
the resultant footprints would still need to be regularized 
to guarantee geometric correctness and consistency. The 
presence or absence of buildings in the input data is fre-
quently indicated by pixel-level predictions or segmenta-
tion masks produced by deep learning algorithms for 
building footprint extraction. However, for various reasons, 
including data noise, model limits or complicated building 
geometries, these projections could have abnormalities, 
fractured borders or errors. Post-processing building bounda-
ries using Douglas–Peucker algorithm involves simplifying 
detected outlines by strategically applying the algorithm 
with a selected threshold. 
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Geo-referencing: Giving geographical coordinates to digital 
photographs or maps is a crucial step in the GIS process, 
known as georeferencing. Buildings may be precisely identi-
fied and delineated using these models, which offer useful 
information for disaster preparedness, infrastructure man-
agement and urban planning. 
 
Raster to vector conversion: Raster data, such as satellite 
images or the output of deep learning models, must be 
converted into vector format as part of the geospatial 
analysis process known as ‘raster to vector conversion’. In 
the case of building extraction, where the objective is to 
transform pixel-level predictions or segmentation masks 
derived from deep learning models into geometrically precise 
vector representations of building footprints, this conver-
sion is crucial. The conversion of raster to vector format is 
done using GDAL (Geospatial Data Abstraction Library). 
 
Change detection: This classifies the changes in various 
object footprints over time. Bi-temporal vector images are 
the result of the conversion to vector data. Different set 
operations are used for both images to identify changes, 
which are then used to categorize structures as new, destro-
yed or unmodified. 
 
Updation of GIS maps: For the GIS database to appropri-
ately reflect the condition of the built environment, GIS 
maps for various objects must be updated. Upgrading GIS 
maps for building extraction includes adding the outcomes 
of building extraction operations to the current GIS map 
layers. The new GIS maps display the buildings precisely, 
aiding in the analysis and decision-making process across 
a range of field by providing valuable spatial information 
and insights. 

Algorithms 

Algorithm-1: Pan sharpening: Although numerous pan-shar-
pening methods exist, we employed the popular Brovey 
transform in this study. On dividing each band of the mul-
tispectral image by the total number of bands, it adjusts 
the intensity of each pixel individually. The resultant im-
age is then scaled by the panchromatic image. The Brovey 
transform modifies the intensity pixel by pixel. Assume 
we have a panchromatic image P and a multispectral image 
with bands R, G and B, abbreviated as M_R, M_G and 
M_B respectively. 
 The fused image F_R, F_G and F_B can be determined 
as follows: 
 
 F_R = M_R * (P/(M_R + M_G + M_B)),  (1)  
 
 F_G = M_G * (P/(M_R + M_G + M_B)),  (2) 
 
 F_B = M_B * (P/(M_R + M_G + M_B)).  (3) 

Algorithm-2: Image splitting: To enable deep learning 
models to be processed, evaluated and trained more rapidly 
involves dividing a large image into smaller patches or 
tiles as shown in eqs (4) and (5). 
 
 num_cols = (width/(output_width)) 
       + (width % output_width > 0), (4) 
 
 num_rows = (height/(output_height)) 
       + (height % output_height > 0). (5) 
 
Algorithm-3: Regularize building footprint: In order to in-
crease the precision and smoothness of the identified 
building footprints, regularization technique is frequently 
used. Depending on the method and regularization strategy 
used, several sets of individual equations may be employed 
as given below. 
 
 R( f ) = λ * ∑ ||∇f (i, j)||, (6) 
 
where f (i, j) denotes the gradient of the estimated building 
footprints at pixel (i, j), R( f ) signifies the regularization 
term and λ is the regularization parameter that determines 
the intensity of the regularization. 
 
Algorithm-4: Conversion from raster to vector: The follo-
wing algorithm describes how the raster data is transfor-
med into suitable vector data for additional processing: 
 
Step 1:  Read the image in ‘TIF’ format 1 to get the CRS 

data. 
Step 2: Polygonalize the raster image developed from the 

CRS data using GDal. 
Step 3: Change the coordinate reference system for all 

polygonized raster geometries in an active geometry 
column.  

Step 4:  The vector representation of the raster image is 
thus obtained. 

Evaluation metrics 

A range of measures, including precision (P), recall (R), 
crossroads over union (IoU, Jaccard index), and F1 score 
(Dice coefficient), can be used to assess the effectiveness 
of a model. The mathematical equations for some popular 
deep learning assessment metrics are given below 
 
 Precision = TP/(TP + FP), (7) 
 
 Recall = TP/(TP + FN), (8) 
 
 IOU = TP/(TP + FP + FN), (9) 
 
 F1 score = (2*Precision*recall)/ 
      ((Precision + recall)).  (10) 
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Figure 6. (a) RGB image, (b) predicted image of building, (c) predicted image of road and (d) predicted image of water bodies. 
 
 
where TP is the true positive, FP the false positive and FN 
is the false negative. 

Results and discussion 

The successful implementation of the proposed system 
yields several positive outcomes. The system is designed to 
accept input from bi-temporal images of Chandigarh (2020 
and 2022). The enhanced ResU-Net model successfully 
detected and classified changes in the bi-temporal images 
of Chandigarh city with an accuracy of 97% on the test 
dataset as shown in Figure 6. This highlights the ability of 
the model to recognize and record architectural changes. 
Additionally, the validation accuracy of 97% validates the 
robustness and generalizability of the model in capturing 
changes in unseen data, according to the study. The binary 
mask developed for an individual image was combined 
with an image from the 2022 dataset. This process includ-
ed the post-processing stage, during which morphological 
techniques like dilation were applied after the prediction 
was completed. The goal of these post-processing step was 
to automatically recognize and categorize changes in building 
footprints over time, as illustrated in Figures 7 and 8. 

 Better outcomes can be obtained using powerful com-
puting resources and training the model for longer epochs. 
The output of change detection of buildings results in these 
borders that resemble structures since the bi-temporal im-
ages under consideration are of various perspectives. The 
accuracy of the model increases as the number of epochs 
increases. The model begins with random weights through-
out the early epochs and gradually modifies them to re-
duce the training loss. As the model is trained, it learns 
more about the patterns in the data and adjusts its parame-
ters to provide more accurate results. 
 When epochs begin providing accurate findings, the loss 
continues to decrease. A dropping loss indicates that the 
model successfully identifies and learns the underlying  
relationships and patterns in the training data. The model im-
proves its ability to predict outcomes by repeatedly adjust-
ing its weights and biases during each epoch. 
 Figure 9 shows how the accuracy of the model increases 
as the number of epochs increases. Throughout the early 
epochs, the model starts with random weights and gradually 
changes them to decrease training loss. The model learns 
more about the patterns in the data as it is trained and ad-
justs its parameters to provide more accurate results. The 
loss graph shows that as the epochs provide proper results, 
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Figure 7. (a) Building change detection, (b) water body change detection, and (c) road change detection of predicted images in 2020 and 2022. 
 

 

 
 

Figure 8. a, Predicted buildings, roads, water bodies (regularized) and thereafter. b, Updated GIS map. 
 
 

Table 3. Evaluation results 

 
Metrics  

Testing on  
Chandigarh dataset 

Validation on  
Hyderabad dataset 

 

Buildings   
 Loss  0.15 0.21 
 Accuracy (%)  0.92 0.91 
 Precision (%)  0.85 0.79 
 Recall (%)  0.75 0.73 
 IOU (%)  85 83 

Roads    
 Loss  0.19 0.20 
 Accuracy (%)  0.91 0.89 
 Precision (%)  0.73 0.75 
 Recall (%)  0.79 0.75 
 IOU (%)  85 84 

Water bodies    
 Loss  0.18 0.25 
 Accuracy (%)  0.91 0.89 
 Precision (%)  0.83 0.81 
 Recall (%)  0.85 0.81 
 IOU (%)  87 83 

the loss decreases. A reducing loss implies that the model 
successfully identifies and learns the underlying relation-
ships and patterns in the training data.  
 Table 3 shows the performance metrics of the proposed 
system for both Chandigarh and Hyderabad cities. These 
metrics offer a thorough assessment of the performance of 
the model in terms of both general accuracy and particular 
characteristics like precision, recall and IOU. The model 
is able to accurately categorize the bulk of samples, as evi-
denced by its high accuracy of 97% as shown in Figure 9. 
According to precision at 89%, 89% of all the anticipated 
positive samples include genuine positives. The ability of 
the model to accurately identify the positive samples from 
among all the real positive samples in the dataset is 
demonstrated by its 77% recall. A decent degree of spatial 
agreement between the anticipated and real building foot-
prints is shown by the IOU metric, which measures the 
overlap between the expected and ground-truth zones, which 
is at 70%. Table 4 shows a comparison of the proposed 
system with existing models. 
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Table 4. Comparison of building detection with other models 

Reference  Methodology Accuracy metric Accuracy Dataset 
 

Building     
 21  FCCDN  Mean IOU 0.85 LEVIR-CD  
 22 O-GAN  Mean IOU 0.88 Tibet  
 23  U-Net  Mean IOU 0.92 Khartom  
 24 EGCTNet  Mean IOU 0.82 WHU-CD  
 25  MSCnet+ Few-Shot CNN  Mean IOU 0.92 LEVIR-CD  
 Proposed work  U-Net with ResNet Encoder  Mean IOU 0.92 Cartosat-3 (Chandigarh and Hyderabad) 
Water bodies      
 26 RetinaNet Mean IOU 0.98 World view-2 
 27 MSFENet Mean IOU 0.91 GF-2 
 28 U-Net Mean IOU 0.89 Sentinel-1 
 29 NFANet Mean IOU 0.90 Gaofen 
 30 NDWI-DeepLabV3+ Mean IOU 0.88 Sentinel-2A 
 Proposed work U-Net with ResNet Encoder Mean IOU 0.89 Cartosat-3 (Chandigarh and Hyderabad) 
Road      
 31 U-NET Mean IOU 0.89 Siegfried map 
 32 Mnih-CNN Mean IOU 0.88 Massachusetts data 
 33 Saito-CNN Mean IOU 0.90 Massachusetts data 
 34 Coord-dense-global Mean IOU 0.92 Gaofen-2 
 35 Deep Res UNet Mean IOU 0.91 Massachusetts data 
 Proposed work U-Net with ResNet Encoder Mean IOU 0.93 Cartosat-3 (Chandigarh and Hyderabad) 

 
 
Conclusion and future work 

The study shows that deep learning approaches are highly 
suitable for precisely identifying and updating building 
footprints on GIS maps. Bi-temporal images of Chandigarh 
were used as input for the proposed system, which worked 
well. It allowed the ResU-Net model to attain a high accu-
racy of 97% on the test dataset. This shows that the model 
can recognize and categorize changes in building structures 
within the study region with accuracy. The robustness and 
generalizability of the model were further validated by the 
validation accuracy of 93%. 
 The findings of this study demonstrate the potential of 
deep learning models, particularly ResU-Net, to enhance 
and automate GIS map maintenance procedures. The accu-
racy and effectiveness of map maintenance operations are 
improved by the capacity of the model to automatically 
detect and update building changes. Numerous applications, 
including urban planning, infrastructure management and 
disaster response, can benefit from this. 
 Although these findings are encouraging, it is vital to 
recognize certain constraints. The characteristics of the 
study area, the accuracy of the data and the specifics of the 
implementation could affect how effectively the ResU-Net 
model works. More research and testing are necessary to 
examine the generalizability of the method to different 
geographical areas and datasets. 
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