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The agricultural sector plays an important role in con-
tributing significantly to the gross domestic product 
(GDP) growth in developing countries. On the other 
hand, agriculture is widely affected by major factors 
such as environmental changes, natural disasters, pes-
ticide control, and soil and irrigation-related issues, 
which reduce crop yield. The convergence of Industry 
4.0 and agriculture offers an opportunity to move into 
the next generation of Agriculture 4.0. The internet of 
things (IoT), remote sensing, machine learning, deep 
learning, big data, cloud computing, thermal imaging, 
end-user apps and unmanned aerial vehicles offer a 
full-stack solution. IoT provides the ubiquitous connec-
tivity of smart devices to the internet to collect, process 
and analyse a large amount of agriculture field data 
more quickly and synthesize them to make smart deci-
sions using various machine learning and deep learn-
ing algorithms. This study reviews the challenges and 
major issues in the IoT agriculture domain and explores 
its emergence with new technologies. It covers the ex-
isting literature and illustrates how IoT application-
based precision agriculture solutions have contributed. 
A case study on weed detection for smart agriculture 
using the YOLOv5 model is presented, achieving high 
accuracy. Finally, various IoT agriculture use cases are 
discussed, along with current research issues and possible 
solutions for future IoT-based agriculture advancement. 
 
Keywords: Cutting-edge technologies, internet of things, 
precision farming, smart agriculture, weed detection. 
 
AGRICULTURE is one of the major sectors to fulfill the 
demand for food across the world. It plays an important 
role in contributing significantly to gross domestic product 
(GDP) growth in developing countries. The agricultural 
sector in India engages a significant portion of the popula-
tion, with 70% depending primarily on it for their liveli-
hoods1. Based on specific facts and statistics, many Indian 
states have implemented an intra-state agriculture cluster 
development programme to double farmers’ income by the 
year 2022 (ref. 2). Agriculture has undergone significant 

changes in the previous several decades in terms of its 
methods and use of contemporary strategies together with 
cutting-edge technology. However, conventional farming 
methods are region-centric in many nations. All farmers in 
a region cultivate the same general set of crops according 
to the same practices for sowing, nurturing, watering and 
harvesting times. These actions lead to unpredictability, 
excessive resource utilization and unchecked waste crea-
tion. Some of the challenges faced by the agricultural sec-
tor are: (i) lack of sufficient knowledge and standard 
practices of the latest framing trends. (ii) For the timely 
operation of crops, labour shortage and high labour charg-
es are the main problems. (iii) Deficiency of soil nutrients 
occurs due to the same crop pattern followed after each 
harvest in a certain area-centric approach. (iv) Overuse of 
fertilizers, insecticides and pesticides with premature or 
delayed treatment of crops in traditional farming tech-
niques. (v) Crop yield degradation due to depletion of the 
topsoil layer, environmental changes and unpredictable at-
mospheric effects. Numerous studies have focused on ad-
dressing the challenges that the agriculture industry faces 
in the realm of internet of things (IoT)2. The collection 
and analysis of data, coupled with the development of 
specialized smart solutions, will be crucial to the future of 
agriculture. State-of-the-art IoT technology properly plans 
limited resources and optimizes IoT to increase productiv-
ity and reduce costs3. Crop productivity is influenced by 
many factors, including environmental monitoring, field 
management, soil and crop monitoring, movement of an 
unwanted object, wildlife attacks, theft, etc.4,5. It can be 
managed by proper data collection through various sensors 
deployed in space, ground and underground for precision 
agriculture in a spatial and temporal manner for quick de-
cision-making. 
 The agricultural industry will undergo another transfor-
mation through the fourth agricultural revolution, which will 
be driven by industry 4.0 (ref. 6). In order to assist farm-
ers by predicting the strategy of enhancing agricultural 
yield, the agriculture system is offered as an idea of IoT, 
wireless sensor network (WSN) and cloud computing7. Agri-
culture divides huge fields into zones, and instead of admin-
istering irrigation, fertilizer, seeds and other farm inputs 
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uniformly as in the past, each zone now receives individu-
alized management inputs based on its specific location, 
soil type and management history8. Remote sensing (RS), 
IoT, machine learning (ML), deep learning (DL), big data, 
cloud computing, thermal imaging, end-user applications 
and unmanned aerial vehicles (UAVs) are just a few of the 
cutting-edge technologies that make up the full-stack sys-
tem of Agriculture 4.0. The IoT-enabled 5G connectivity 
trend includes high data rates, better coverage and higher 
output, and thus provides solutions for agribusiness models 
to makes IoT work on actuators and drone devices9. For 
accurate statistics, a variety of sensors are used to measure 
the soil condition, field environment and health of the 
plants10. For the most part, wireless mesh networks and 
low-power wide area networks are used for data transfer 
while reporting the data produced during agricultural out-
put11. Crop identification, yield forecasting and large-scale 
field monitoring have been expertly carried out using RS 
technologies12. Modern imaging and database analysis 
technology, which offers excellent prospects for real-time 
insights into agriculture, delivers analytical statistics for 
crop growth and disease pattern identification using ML 
and DL8,13. The current research trends in IoT agriculture 
include network- and infrastructure-oriented platforms, 
architecture, applications, security and challenges among 
others14,15. To ensure large-scale high-throughput and WSN 
use in rural regions, more network capacity and delivery 
latency reduction are required to increase agricultural 
productivity16. In order to obtain the full benefits of IoT, 
its implementation must include reliable connectivity, a 
security-based framework in agriculture business process 
development with the goal of increasing end-user satisfac-
tion, improving operational excellence and generating 
revenue streams using agriculture IoT17. 
 Figure 1 represents the generic IoT architecture in the 
context of smart agriculture. Four essential phases in a 
smart agricultural setting make up the main objective of 
the overall framework: data sensing, data collection, data 
transmission and data processing8. The structure of the 
framework is based on a multi-layer architecture consisting 
of five main layers: physical layer, network layer, middle-
ware layer, service layer and application layer. The physi-
cal layer consists of various kinds of devices such as 
sensors, agriculture robots, UAVs, barcodes, GPS, RFID 
chips, actuators and other physical objects connected to 
perform sensing and control actions in the network of agri-
culture IoT18. At this level, with low processing capability 
and limited resources, sensors perform multiple tasks of 
data collection related to equipment positioning, motion 
detection, soil sensing, temperature and other environmental 
parameters, while action will be performed by the actuators 
and controllers based on the direction of the micro-controller 
unit. The network layer consists of a topology for data 
transmission via sink nodes from the physical layer to the 
middleware layer. Various communication modes, wired/ 
wireless mediums with NFC, Bluetooth, Wi–Fi, 4G/5G, 

etc. are used for the transmission of information in IoT9. 
IoT also uses a wide range of wireless access technologies 
(e.g. Wi–Fi, Bluetooth, ZWave, ZigBee, long-range wide-
area networks (LoRaWAN), SigFox) and mobile technol-
ogies (e.g. GPRS/2G or eMTC and NBIoT) and Ethernet 
for data transmission. The hardware and software complexi-
ties are encapsulated by the middleware layer to make it 
easier to use and develop IoT apps and services18. It is re-
sponsible for managing the results achieved and making 
decisions based on information received from the network 
layer for ubiquitous computing. It also handles data trans-
fer, data aggregation, protocol conversion, heterogeneous 
network management, security and settings for information 
acquisition. HYDRA and SMEPP are highly effective 
middleware solutions in the agricultural setting due to their 
context-aware functionalities2. The service layer provides 
several technologies, such as network management services 
like SDN/NFV, cloud and fog computing, AI/ML/DL and 
big data analytics for the application layer19. This layer 
focuses on specific areas or domains, such as monitoring, 
detection, control, decision-making, recognition, etc. This 
approach streamlines the process of performing tasks such 
as sensing and actuation. A variety of IoT-based messaging 
protocols are used by the application layer to carry out a 
variety of agricultural tasks, which include some well-known  
 
 

 
 

Figure 1. Layered architecture of agriculture internet of things. 
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protocols such as MQTT, CoAP, XMPP, AMQP, etc.20. 
This layer should improve RESTful APIs to make it easier 
to share and use information by searching and retrieving 
real-time information to discover the potential benefits of 
IoT in agriculture. 
 Agriculture 4.0 brings in more productive farming prac-
tices with intelligent monitoring and decision-making sys-
tems. Since the advent of wireless sensor technology two 
decades ago, IoT-based smart farming has been actively 
under development. Farooq et al.3 addressed the physical, 
data acquisition, processing and analytics components of 
IoT-based smart farming, as well as the network architec-
ture, layers and topologies that were utilized. Elijah et al.21 
discussed the application of IoT and data analytics tech-
nology in agriculture. Specifically, they addressed issues 
such as security and fraud prevention, cost reduction and 
operational efficiency within the Agi-IoT ecosystem. Alharbi 
and Aldossary22 explored the integrated strategy involving 
edge, fog and cloud architecture for overseeing resource 
needs in diverse agricultural tasks, aiming to improve the 
energy efficiency of smart farming systems. Ayaz et al.23 
discussed various wired/wireless sensors, UAVs and sensors 
for soil sampling, crop surveillance, crop yield forecasting 
and harvesting. Big data, AI and the IoT, were discussed 
in relation to agriculture by Misra et al.24. The use of UAVs 
in agriculture, greenhouse monitoring25, disease detection26, 
supply chain modernization, social media in the food sector, 
food quality evaluation and modernization for food trace-
ability were covered in preliminary27,28. By examining agri-
cultural application scenarios and practical tests, Feng et 
al.29 examined wireless communication technologies for 
precision agriculture, particularly NBIoT, LoRa and ZigBee. 
Crop yield improvement30, crop disease identification, 
weed detection31 and pest detection32 have all been actively 
explored using the applications of ML and DL. Zeynep et 
al.33 performed a comprehensive literature review on the 
use of various DL approaches in smart agriculture. By fus-
ing the ideas of IoT, cloud computing and data mining, 
Liu et al.34 suggested an integrated framework for agricul-
ture. In their study of IoT, AI and DL use cases, Qazi et 
al.25 introduced a DL system based on convolutional neural 
networks for detecting and categorizing plant diseases, 
and the system was trained using annotated images of dis-
eased plants. 
 For IoT-based agriculture, Friha et al.18 discussed cloud 
computing, edge computing, SDN and NFV technologies 
and open-source middleware platforms. Misra et al.24 explai-
ned the role of IoT and big data analysis for drone-based 
crop assessment, intelligent farm equipment, greenhouse 
monitoring and social media sentiment analysis for food 
assessment with Blockchain-based digital traceability were 
also included in their review. Chen et al.10 designed an 
IoT-based ‘AgriTalk’ solution for precision-based soil 
farming, which was deployed on turmeric plants to enhance 
their growth and production. Jani and Chaubey20 proposed 
a smart agriculture framework to automate and optimize 

resource utilization (irrigation, pest control and fertigation) 
in smart agriculture systems using IoT. Shafi et al.19 pre-
sented an integrated approach for crop health assessment 
using IoT and drone based multi-spectral data for crop 
health with practical implementation. They collected data 
using IoT Agri node and DJI Phantom 4 Multi-spectral 
drone. Data classification task was carried out using SVM, 
NB and NN-based ML/DL algorithms. The integrated solu-
tion developed and implemented by Bouali et al.26 pro-
vides smart irrigation that is cost-effective through real-time 
data collection and monitoring using a cloud-based IoT. 
For the experimental setup, the Arduino nano board was used 
with Zigbee communication technology for data acquisi-
tion, and the testbed was deployed using Raspberry Pi and 
Node-RED programming tools. Ferrag et al.27 introduced 
security and privacy solutions for IoT applications in a 
four-tier architecture designed for IoT-based agriculture 
and classified potential threat models. Vangala et al.28 exam-
ined several functional criteria necessary for the security 
protocols and generalized blockchain-based architecture 
with their consensus algorithms that may be used for the 
smart agriculture environment. Table 1 summarizes the ad-
vantages, limitations and key contributions made by dif-
ferent authors in the agriculture domain. 

Sensors for Agriculture 4.0 

In order to perceive factors like soil conditions, weather 
parameters, humidity, crop conditions, minerals, water level, 
pH values, etc. agriculturalists typically utilize sensors. In 
general, sensors can be classified into various types based 
on the properties of data captured, such as light intensity 
and reflection, electrode sensitivity, pressure and force values. 
Some common types of sensors include optical sensors, 
mechanical sensors, electrochemical sensors, dielectric 
sensors, position sensors and electronic sensors. Sensitivity 
of the sensor is the ratio of its output signal to its measured 
property. Various kinds of sensors and their utilization for 
agriculture applications are discussed below. 

Soil temperature and moisture sensors 

The soil moisture sensor measures the moisture and root 
water retention status of crops3. By detecting the dielectric 
constant of the soil, it may determine the volume of soil 
moisture. Also, soil temperature sensors are used to deter-
mine the water tension of the soil, profile depth, soil moisture 
and temperature. It comes in a variety of forms, including 
thermocouples, thermistors, resistance temperature detec-
tors, infrared sensors and semiconductor sensors18. 

Meteorological station 

It is a portable weather station that offers real-time weather 
updates on the following factors: air temperature, speed 
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Table 1. Analysis of various papers in the domain of smart agriculture based on the present study 

Authors Key aspects Contribution Methodology Scope for improvement 
 

Shafi et al.19 Hybrid approach for crop health 
identification using IoT,  
UAV and ML model. 

Implementation of an integrated 
IoT and drone based  
multispectral data approach  
for crop health monitoring. 

Data collection using IoT  
Agrinode + DJI Phantom4 
multispectral Drone. 

Data classification using SVM, 
NB and NN-based ML/DL 
algorithm, NDVI maps, IoT 
sensor data maps. 

Limited approach of 
ML/DL algorithms  
for classification.  

Reference dataset  
needed. 

Jani et al.20 Resource optimization model  
using SMAIoT-smart  
agriculture system using  
IoT. 

Simulating crop cycles with  
six irrigation modes: no  
irrigation, flooding, drip  
irrigation, sprinkler, soil  
water deficit and  
SMAIoT-auto. 

Specified automation in crop 
production stages (irrigation, 
fertigation, pest management). 

Irrigation recommendation  
flow chart designed for a  
crop cycle. 

SMAIoT framework with  
event handling and  
processing, database  
operations, cloud services, 
communication topology,  
decision making and AI. 

ML algorithms not  
specified for zone 
wise irrigation. The 
theoretical approach 
given only for pest 
control, fertigation, 
crop yield estimation. 

Farooq et al.3 Analysis on smart farming  
implementation using IoT. 

Layers of IoT based smart  
farming covered (perception,  
communication, data  
processing, data analytics). 

Explained architecture of  
communication, layers,  
topologies configuration  
and protocols. 

Comparative study on existing 
wireless protocols, 
smartphone-based  
applications, industry  
related trends and security 
alert scenarios presented. 

Theoretical aspects  
covered related to  
enabling technology. 

Limited discussion on 
ML/DL, edge/fog 
computing methods 
and uniform policy  
for IoT. 

Elijah et al.21 Introduction of IoT and data  
analytics in agriculture. 

Combined approach of IoT and 
Data Analytics presented. 
Highlighted use of IoT-based 
integrated farming, safety  
and fraud prevention, cost  
reduction and operational  
efficiency. 

IoT and DA used for  
prediction, storage  
management and decision-
making. Communication  
focused on LPWA  
technologies (NB-IoT). 

NB IoT not explained in 
detail. Data analytics 
related technical  
specification and  
algorithm missing. 

Alharbi et al.22 Energy efficient smart agriculture 
environment using edge/fog  
and cloud architecture. 

Integrated paradigm deployed 
using Edge/Fog and cloud to 
improve energy-efficiency  
and reduce carbon emissions. 

Architecture allows real-time  
operation in several layers. 

Studied the energy efficiency  
of IoT agriculture  
applications over an  
edge-cloud architecture,  
use the MILP optimization 
model. 

Real-time implementa-
tion not done to  
evaluate the proposed 
model. Scope of ML/ 
DL model integration 
to architecture for  
efficiency  
enhancement. 

Friha et al.18 Review on IoT and emerging  
technologies for smart  
farming. 

Presented layered IoT-based  
architecture of agriculture. 

Includes UAV, wireless  
technologies, cloud/edge  
solution, open-source IoT  
platforms and SDN-NFV  
approach. 

Compared middleware  
platform and open-source  
IoT platforms to evaluate  
real-world smart farming  
that makes use of multiple  
emerging technologies. 

Technical challenges 
need to minimize 
while IoT agriculture 
integrates with  
emerging  
technologies. 

Ayaz et al.23 IoT-based smart agriculture  
fields. 

Highlighted the role of  
technology and the hierarchy 
of IoT apps, sensor types  
and services for smart  
agriculture. 

Presented wireless sensors, 
UAVs, cloud-computing, 
communication technologies 
and future vision of technical 
companies for Agri-IoT. 

Limited coverage on 
ML/DL, Edge/Fog 
computing techno-
logy. Not included  
Security and privacy 
issues in the survey. 

Misra et al.24 Review on AI, IoT and bigdata  
driven agriculture and food  
sector. 

Discussed the use of IoT, AI  
and big data in agriculture, 
supply chain automation,  
and food quality evaluation  
in the context of future  
agri-food systems. 

IoT and big data analysis for 
crop imaging using drones, 
intelligent agricultural 
equipment and monitoring 
greenhouses. Sentiment  
analysis based on social  
media, spectral techniques 
and sensor fusion for food 
evaluation with digital  
traceability based on a  
blockchain. 

Comparative analysis  
for AI and ML-based  
algorithms is required. 
Security,  
interoperability  
related issues not  
covered. 
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and direction of the wind, relative humidity, radiation, solar 
intensity summary, rain gauge, evapotranspiration calcula-
tion and dew point calculation. This information can be 
used to monitor weather conditions during various agricul-
tural operations. It is operated based on solar energy for 
remote area deployment, and different types of multiple 
sensors are mounted on this single unit. 

NPK and pH sensors 

They help to collect soil chemical data by measuring 
available chemical substances and pH levels to identify 
crop suitability in particular farm areas. They detect the 
activity of specific ions, such as nitrate, phosphate and potas-
sium. Also, the pH values are determined, such as 6.5 to 
7.5 (neutral), over 7.5 (alkaline) and less than 6.5 (acidic) 
using electrochemical sensors. 

Meters, level and pressure sensors 

It is crucial to continuously monitor and measure the water 
supply rate, as well as the dissolution rate of nutrients and 
minerals specific to crops. This involves monitoring values 
from the flow meter, level sensor and pressure sensors to 
control the activation or deactivation of irrigation valves, 
pumps and other related equipment20. The level sensor can 
be capacitance, optical, or conductivity. Float switch-based 
sensors are used for point-level indication, while ultrasonic 
and microwave-based sensors are for measuring continuous 
levels. 

Infrared sensors 

The measurement of environmental changes is achieved 
by generating infrared rays through two distinct methods, 
employing active or passive sensor types. An active IR 
sensor is a light-emitting diode and a receiver that emits 
and detects IR radiation. The passive IR sensors have only 
an LED and can only detect radiation2. In the field, infrared 
sensors can be deployed for object detection, tracking, 
plant counting, intrusion identification, etc. 

RGB and multi-spectral camera 

This is employed to examine agriculture crop statistics us-
ing NDVI and NDRE data through the effect of different 
wavelength bands of capture images via drones or RS field 
survey19. RGB cameras only record information for the 
red, green and blue bands of the electromagnetic spectrum, 
while multispectral cameras include additional bands. It 
used shortwave infrared, near-infrared, or thermal infrared 
bands to obtain additional information such as timely esti-
mates of crop yield, pest and disease-infected areas and 
water-scarce areas. 

GPS module 

The global positioning system (GPS) is a technology used 
to determine the location of a device in the field of precision 
farming and digital agriculture. The precise location of 
machinery, weed patches, seed-planting ratios, yield maps, 
soil sampling, crop counting, and crop variability can all 
be determined using GPS. 

Communication technology for Agriculture 4.0 

For agricultural IoT applications to effectively serve rural 
areas, a vast coverage area and minimal deployment or 
maintenance costs are essential. 6LoWPAN, LoRa, IEEE 
802.15.4, WiFi and Bluetooth are popular communication 
technologies used in agriculture IoT. It can be divided into 
standards for short-range and long-range communication. 
5G is particularly well suited for most current deployments35. 
IoT utilizes a variety of wireless access technologies, in-
cluding NFC, Bluetooth, ZWave, ZigBee and RFID, to 
cover short distances within 100 m and long distances up 
to 10 km using LoRaWAN, Sigfox and NB-IoT36,37. There 
are numerous wireless communication standards now in use 
for agricultural applications, some of which are mentioned 
below. 

IEEE 802.11 Wi–Fi 

A networking technique called Wireless Fidelity (Wi–Fi) 
enables sensor and IoT devices to connect over a wireless 
signal38. The communication range is covered from 20 m 
to 100 m (ref. 39). IEEE 802.11 is a wireless communication 
standard used for local area networks (WLAN) and is 
classified into various standards such as 802.11a, 802.11b, 
802.11g, 802.11n and 802.11ac. These operate at different 
frequencies such as 5, 2.2, 2.4, 2.4/5, 60 and 5 GHz. These 
standards support data transfer between 1 Mb/s and 7 Gb/s. 

6LowPAN and CoAP 

Similar to IEEE 802.15.4, resource-constrained devices that 
interact via low-power, lossy networks widely adopt the 
6LowPAN, which is an IPv6 adaption layer protocol40. 
Among other functions, 6LowPAN uses techniques for 
packet compression, fragmentation and reassembly to shrink 
IP datagrams and eliminate the majority of unnecessary 
fields41. At the application layer, CoAP is a RESTful proto-
col that sits on top of the UDP transport protocol. CoAP 
works like HTTP and can be converted to the latter for in-
tegration with web services, providing HTTP direct map-
ping capabilities, low processing overhead, simple proxy 
configuration and processing and support for asynchronous 
messaging42. 
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LoRaWAN 

The open and nonprofit organization Lora TM Alliance 
developed the long-range communication standard known 
as LoRaWAN. The two frequency bands used by LoRa 
modules are 433 and 868 MHz (ref. 19). The primary goal 
of this protocol is to provide compatibility across various 
operators43. Compared to other standards, the LoRa techno-
logy is better for communication in agricultural lands due 
to a clear line of sight. In order to increase agricultural 
output and foresee potential issues, a framework based on 
LoRa has been developed44. 

ZigBee 

It is a wireless network protocol for low power that builds 
on the IEEE 802.15.4 standard45. With a working range of 
up to 100 m and a bandwidth of 250 kbps, ZigBee can ope-
rate in either a star topology, in which case the end devices 
are connected to the coordinator directly, or a tree topology 
using intermediate routers42. It can be widely used in agri-
culture environments where IoT sensors collect and transmit 
data to the remote server to be quickly analysed for deci-
sions-making46. 

Mobile communication 

Farmers can monitor agricultural production, soil and cli-
matic conditions and detect real-time and temporal variability 
across fields using mobile communication29. Standards for 
mobile communications include multiple generations (2G/ 
3G/4G/5G) with technology advancement. The 5G techno-
logy, with its wireless capabilities such as Massive MIMO, 
multiple access, ultra-dense network, multi-carrier and 
modulation and coding, can greatly facilitate the deployment 
of IoT devices. In addition, 5G includes network slicing, 
control-plane/user-plane separation, mobile edge compu-
ting and network function virtualization, among other inno-
vations47. The 5G integrates IPv4 and IPv6, offering speeds 
between 10 and 800 Gbps. 

WiMAX 

This technology provides broadband multi-access connec-
tivity, both wired and wireless, which supports portable, 
fixed and mobile communication. The data transmission 
range for global interoperability of microwave access is 
between 1.5 Mb/s and 1 Gb/s. However advancements in 
technology have improved the data transfer rate48. 

SigFox 

This cellular network is designed for IoT and machine-to-
machine (M2M) communications, characterized by a low 
data rate and an ultra-narrow band wireless technology49. 

In agriculture to locate the position of objects, a geolocation 
system can be built using the SigFox network with ultra-
narrowband communication. 

Bluetooth 

The core specification version 4.0 introduced BLE, which 
is a low-energy and IoT-focused version50. The BLE net-
work comprises two types of devices – Slaves and Mas-
ters. These slaves and masters are linked together in a star 
topology. BLE uses 40 channels with a 2 MHz spacing 
and runs in the unlicensed 2.4 GHz ISM band51. The cover-
age area typically spans many tens of m, and the physical 
layer data throughput is 1 Mb/s. Many IoT agricultural 
equipment offer Bluetooth for multi-tier agricultural ap-
plications to support a close communication range52. 

NB-IoT 

LPWA-based communication technologies, such as the 
Narrowband Internet of Things (NB-IoT), are highly suitable 
for the agriculture industry. NB-IoT, a 3GPP standard cel-
lular technology, has several promising features, including 
long-distance coverage, low device power consumption, ultra-
low device cost, simplified implementation and support for 
a large number of devices with low throughput53,54. Its 
wide geographical coverage, scalability, low cost and long 
battery life of up to 10 years meet the significant needs of 
the IoT-based agriculture domain55. 

MQTT 

This Message Queue Telemetry Transport protocol is well 
suited for IoT networks because it is a lightweight protocol 
that works on the publish/subscribe approach for messaging. 
MQTT comprises four primary components like subscribers, 
publishers, brokers and messages for facilitating communi-
cation. In MQTT, session awareness features are provided 
by the use of TCP at the transport layer, but device-to-
device communication and multicast are not supported56. 

Enabling technologies and their role in  
Agriculture 4.0 

From the perspective of intelligent agriculture using IoT, 
it includes not only sensors and communication networks, 
but also various technologies such as data storage, data 
processing and analysis, forecasting and end-user services 
in the agriculture domain. 

Cloud computing 

The IoT agriculture paradigm necessitates the storage and 
analysis of a massive number of sensors-collected data 
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with cloud-based services such as basic infrastructure, plat-
form, cloud storage, data mining, ML and visualization 
tools57. Cloud-based software architecture has been suggest-
ed as a more accurate way to process and retrieve infor-
mation, and perform agricultural operations58. The cloud 
adopts a centralized design featuring high latency and com-
putational power. It is structured with an application layer 
at the top and a network of smart things below. Agri-Info59 
is a cloud-based system that leverages IoT technology to 
collect and analyse diverse agricultural data from various 
IoT devices in different locations. It provides agricultural 
information as a service to its users. CLAY-MIST60 is an ef-
ficient cloud-based approach for tracking particular crops 
in real-time to provide exact and efficient decision support 
to farmers. 

Fog-edge computing 

The fog and edge layers gather data from IoT devices 
connected to the IoT application and help minimize latency 
and cost61,62. It can process a portion of it at the edge of 
the network with any device with storage, computing and 
network access. It is an ideal platform to enable low-energy 
WSNs due to its features, including closeness, location 
awareness, geographical spread and hierarchical organiza-
tions63. The features and specifications of smart farming 
are taken into account when deploying this technology64. 

ML/DL modelling 

There are numerous types of algorithms accessible in ML, 
including linear regression, naive Bayes, decision tree, 
SVM algorithm, logistic regression, K-means, random forest, 
dimensionality reduction and gradient boosting techniques. 
To build an artificial neural network (ANN) that can learn 
and make intelligent predictions on its own, DL structures 
algorithms into layers. Basically, a convolution neural net-
work (CNN) is used for image processing, and a recurrent 
neural network (RNN) is used to find traffic trends on a 
map. Different types of algorithms, such as CNN, LSTMS, 
RNNS, GANS, RBFNS, MLPs, SOMs, DBNs and autoen-
coders are available in DL. 
 In the integration of DL networks and IoT, Khalil et al.65 
studied CNN, such as AlexNet, ResNet, GoogleNet and 
VGG16. Based on the integration of data gathered by various 
sensors with AI systems, Vincent et al.66 proposed a neural 
network and multilayer perceptron (MLP) based expert 
system which helps farmers to assess a land’s potential for 
agriculture. With smart water management and adjusting 
the environment for crop growth, Bu and Wang67 introduced a 
smart farming system based on deep reinforcement learning. 
 In order to address the problem of decentralized ML, 
new ML techniques such as federated learning68 are applied, 
and data management systems are anticipated to be examined 
for farm data preservation in agricultural AI applications6. 

Big data analytics 

Big data technology is a software tool that analyses, pro-
cesses and extracts data from extremely complicated and 
large datasets that would be impossible to process using 
traditional methods69. Muangprathub et al.70 introduced a 
system for monitoring the environment that receives infor-
mation from IoT and manipulates crop parameters using 
relevant information about the effects of the environment 
through data analysis using data mining71 on crop fields. 
Based on the needs of IoT applications, data analytics 
(DA) has been divided into various categories72, which 
comprise massive analytics, real-time analytics, offline 
analytics, memory-level analytics and analytics at the level 
of business intelligence73. Classification, clustering, pre-
diction and association rule are four categories that group 
together many DA techniques74. For example, ADSS mobile 
agricultural expert systems utilize predictive analytics to 
provide farmers with intelligent and precise agricultural 
recommendations based on big data75. 

Software defined networking (SDN) 

SDN is a network architecture that achieves the separation 
of network control functionality, thereby creating a decou-
pled control plane and data plane for more flexible and  
programmable network management76. Network function 
virtualization (NFV) aims to separate network transfer and 
network services from the underlying physical hardware 
they run on. The data plane consists of network devices, 
such as switches and routers, that lack autonomous decision-
making capabilities for packet routing. The southbound in-
terface, such as OpenFlow, is utilized to implement the 
packet-forwarding logic defined by the SDN controller in 
the forwarding devices77. According to the policies specified, 
SDN controller will produce network configurations. The 
controller and application layer are separated by the north-
bound interface, which is used for a variety of agricultural 
service applications18. 

Blockchain technology 

Blockchain technology keeps the encrypted messages in 
blocks to establish a chain of records in a distributed manner 
on each participating node and guarantees transaction inte-
grity, ensuring that no records are falsified or erased from 
the ledger. Utilizing a consensus mechanism, the distributed 
nodes must concur on the legitimacy of transactions27. 
Here, we considered three types of blockchain: (i) Public/ 
permission-less/open-access blockchain, (ii) hybrid/con-
sortium/shared-permissioned blockchain and (iii) private/ 
permissioned/closed-access blockchain28. AgriLedger, Ripe, 
AgriDigital and Agrichain are a few examples of block-
chain-based smart contract systems available in agricul-
ture6. 
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Security mechanisms 

Precision farming applications work on a fully data-driven 
approach, posing crucial security issues like authentication, 
availability, confidentiality and integrity attacks through 
data modification and rogue data injection. Ferrag et al.27 
performed a survey of security and privacy solutions for 
IoT applications, along with a discussion of how these solu-
tions might be applied to agriculture and an analysis of 
blockchain-based privacy protection for agricultural applica-
tions. Granjal et al.40 presented IPv6 over 6LoWPAN, as 
well as the routing layer, transport layer and application 
layer. Embedded hardware-based IoT authentication capabil-
ities can be supported by trusted platform modules to ensure 
physical protection and monitoring mechanisms in IoT. 
The adoption of encryption algorithms, IDS mechanism, 
secure trust mechanism, ML-based attack mitigation and 
lightweight key management must take into account the 
limitations of IoT end devices in terms of computational 
power, storage capacity and battery life18. 

Application perspectives of Agriculture 4.0 

IoT sensors can collect valuable information on various 
factors such as humidity, temperature, weather and moisture 
levels. This information can then be used to develop crucial 
real-time processes, including autonomous irrigation, moni-
toring of water quality, soil constituents, yield estimation 
and detection of diseases and pests in crops78. 

Monitoring 

In agriculture, several factors need to be monitored continu-
ously in a spatial and temporal manner to identify envi-
ronmental changes, phenotyping of plants, external activity 
and soil and air parameters, which are considered the key-
stone of precision21. Moreover, any agriculture monitoring 
involves the following components: 
 
Field monitoring: This can be done at any time and in 
multiple ways to detect changes in field statistics using RS 
methods, UVA/drone-based monitoring, autonomous robots, 
sensor deployment, etc. to supply real data to the end-users 
via an application interface. Popescu et al.79 introduce an 
IoT device, a wireless sensor network and an UAV coop-
erative hierarchical system framework for agricultural 
field monitoring applications. Gondchawar et al.80 proposed 
a solution for monitoring and control of field data and 
field activities remotely through the deployment of a GPS-
controlled robot system. 
 
Soil monitoring: This collects data on nutrients and com-
pounds like nitrite, potash and carbon materials in the soil, 
as well as soil temperature, pH, electric conductivity and 

soil moisture. Soil monitoring tests can help increase crop 
productivity by recommending appropriate fertilization 
solutions for specific crops81. Angelopoulos et al.82 develo-
ped an intelligent decentralized irrigation system using 
soil moisture sensors and mote-driven electro-valves for 
strawberry greenhouses in Greece. 
 
Crop monitoring: This is a routine, close examination of 
plant life using RGB or multispectral cameras and IoT 
sensors to identify any damages done to diseases or insects. 
AR-IoT83 is an application that uses a colour scale to rep-
resent crop parameters while monitoring with the support 
of IoT data visualization and augmented reality (AR). A 
low-power leaf-sensing device was suggested by Daskalakis 
et al.84 for measuring plant water stress and temperature. 
To improve productivity in agriculture, it is essential to 
monitor crops and predict the estimated time of harvest. 
de Souza et al.85 proposed an integrated framework that uses 
a combination of hardware, software, middleware and other 
devices to monitor crops. 
 
Pest and crop disease monitoring: IoT-based crop disease 
monitoring system has been introduced to detect weeds, 
pests and diseases that affect wheat86. Image-processing 
technique-based monitoring is also widely used for the 
early detection of plant diseases87. Abbas et al.88 catego-
rized sugar beet plants with an accuracy of more than 85% 
using hyperspectral signatures. It was based on the deve-
lopment of spectral disease indices (SDIs) and spectral 
vegetation indices (SVIs) for sugar beet plants. PestNet is 
DL method for finding and classifying common and multi-
class pests89. Early detection of crop diseases in agriculture 
can be challenging. Jiang et al.90 proposed a real-time 
identification method for apple leaf diseases using task-
specific image acquisition equipment and a set of pest image 
data. This method is based on a deep learning technique 
and enhanced CNNs. 

Fertilizers and pesticides control 

In the agricultural field, the most common fertilizers consist 
of nitrogen, phosphorus and potassium, which are primary 
plant nutrients. To measure the amount of N, P and K nutri-
ents in soil, Ramane et al.91 designed a Fiber-Optic sensor 
that utilizes the colorimetric principle, where the absorption 
of light by a solution in a modification of the sensor output. 
In addition to creating an IoT and AI-based smart fertiliza-
tion system, Lavanya et al.92 developed a fuzzy rule-based 
system that analyses soil data to determine the levels of N, 
P and K. They integrated the colorimetric mechanism into 
the NPK sensor using a light-dependent resistor (LDR) and 
light-emitting diodes (LED). In Faiçal et al.93 study, an algo-
rithm was designed and tested to automatically adjust the 
path of UAVs based on variations in wind speed and crop-
spray direction. 
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Irrigation control 

Water distribution on farms can be improved using smart 
agriculture. If the entire field is not evenly watered by an 
effective irrigation system, the quality of the crop that is 
produced will suffer94. Goap et al.95 described an intelligent 
irrigation management system that senses soil and meteoro-
logical characteristics using ML and open-source technology. 
Using HTTP and MQTT protocols, Nawandar and Satpute96 
developed a cost-effective intelligent irrigation scheduling 
system for efficient watering based on NN and uses HTTP 
and MQTT protocols. A low-cost, cloud-based, autonomous 
watering system built on SIGFOX communication was de-
veloped by Fernandez-Ahumada et al.97. The smart water 
management platform (SWAMP) is an intelligent IoT-
based irrigation management system that offers tools for 
managing irrigation in accordance with crops and soil mois-
ture. It provides tailored data-gathering, processing and 
synchronization services for a variety of plants, climates 
and nations98. 

Weed detection 

Weed detection operations must be performed using ML 
and DL-based algorithms to accurately detect weeds among 
crop plants using robotic tools or UAV image-capturing 
mechanisms. Bah et al.99 performed image collection using 
UAVs and applied a DL algorithm over the collected dataset 
for weed detection. The DL algorithm was utilized by Koun-
alakis et al.100 to detect weeds using the transfer learning 
method. For real-time weed management, Partel et al.101 
developed a smart sprayer that uses CNN and NVIDIA 
GPUs. To classify weeds, Lottes et al.102 introduced the 
method of semantic segmentation of images based on pix-
els, dividing them into soils, crops and weeds. Based on a 
condensed training set, Potena et al.103 designed a setup of 
the multi-spectral camera placed on the ground-based agri-
cultural robot for real-time precise weed classification. 

Harvesting and yielding 

To achieve precise harvesting time, optimize yields, reduce 
environmental effects and save costs, precision agriculture 
uses variety of technologies, including sensor nodes, GPS, 
ML/DL algorithms and big data104. The smart harvesting 
system mainly consists of essential features like obstacle 
detection, robotic arms, motion control, fruit classification, 
colour and shape identification, object detection and opti-
mal harvest date18. Megalingam et al.105 developed a robotic 
arm for trimming and gathering fruits from trees, which 
connected via Bluetooth to control arm motion using a 
mobile application. According to three different criteria, 
including colour, depth and shape, an algorithm for guiding 
harvesting robots to autonomously pick up apples has 
been presented by Lin et al.106. Xu et al.107 suggested a 

technique to determine the best time to harvest corn in the 
field using multi-spectral RS data. 

Challenges and issues 

This section highlights the challenges and issues that remain 
unresolved and may be contributing to the slow adoption 
of IoT in the agriculture industry. 

Lack of standards 

The new challenge of IoT agriculture is crucial to establish 
data exchange and communication standards that can con-
nect various systems to form a unified and comprehensive 
agricultural exploitation system. It is important to have 
validated standards for data and process representation to 
ensure that any technological choices remain interoperable 
with newer equipment and receive enduring support from 
the manufacturers and other industries during the lifespan 
of an agricultural equipment. With standardization, interop-
erability issues can be resolved, enabling a unified system 
to cover all aspects of agricultural exploitation2. 

Hardware challenges 

Basically, in the agriculture sector, the deployment of IoT 
components in the air, on the field and underground helps 
cover remote areas. Therefore, appropriate programming 
tools and low power potential are required, as instant battery 
replacement is challenging during a power outage, especially 
in a vast open field108. In order to assure efficiency, develop-
ing IoT systems for open-field deployment needs more 
sensors to monitor the environment and the crops as they 
grow. 

Security challenges 

IoT devices are susceptible to physical interference, includ-
ing theft, animal and predator attacks, link changes and 
physical address modifications109. Attempts like device cap-
ture attacks could target the IoT-enabled, location-based 
service that is utilized for precision farming110. A network 
can be compromised by congestion attacks, virus injects, 
forwarding attacks and denial of service. Data security 
and confidentiality must be considered in the middleware 
layer. By authorizing specific entities, one can ensure that 
only authorized users can access application-layer data14. 
For IoT devices, due to limited resource constraints like 
limited memory, poor connectivity, computational capabili-
ties and power consumption, it is not feasible to imple-
ment complex and sophisticated algorithms. So, hardware 
constraints should be taken into account while developing 
encryption methods, key distribution, intrusion detection 
techniques and routing policies111. 
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Technical issues 

IoT-based agriculture solutions face various technical issues 
at different stages of the framework, such as reliability, inter-
operability, scalability, interference, localization, resource 
optimization and quality of services in real-field deploy-
ment. 
 
Interoperability: A wide variety of IoT equipment manu-
facturers is available, which creates a heterogeneous envi-
ronment due to a lack of common standards and protocols. 
So technical, semantic, syntactic and organizational in-
teroperability will arise in actual deployment. Technical 
interoperability is about different protocols and infrastruc-
tures that enable IoT devices to communicate112. To ensure 
interoperability in data exchange, various data-transfer 
formats such as Extensible markup language (XML) and 
JavaScript object notation (JSON) have been adopted. 
Semantic interoperability refers to the understanding of 
information shared between individuals. 
 
Scalability: Deployment of IoT-based agriculture is not 
limited to a specific region; it can be scalable with other 
existing infrastructure. The network applications and 
back-end databases for IoT in agriculture must be depend-
able and capable of handling increasing demands, as the 
addition of various end-user applications makes the opera-
tions more complicated over time. To ensure this, it is cru-
cial to design a highly scalable security plan and an 
intelligent IoT system for each end device3. 
 
Latency and dependency: Mainly, cloud-based applications 
require ubiquitous high-bandwidth internet connectivity. 
So, we must ensure that no outage and resource constraints 
in cloud connectivity arise in IoT systems. Also, it has a 
high dependency and high latency in the case of remote 
areas of agriculture. These issues can be resolved by placing 
a fog and edge layer near IoT devices to analyse data in 
real time near the edge of the network. 
 
Optimization: To deploy IoT equipment in the agriculture 
field, it must be ensured that the number of IoT sensors, 
sink nodes, gateway, cloud service and communication topo-
logy optimize resources. However, due to different farm 
sizes, variability in crops and other constraints of deploy-
ment, one model of resource optimization is not suitable 
for all cases and causes other challenges like performance 
degradation, bandwidth and latency issues, etc. Determining 
the resource distribution for the highest possible agricul-
tural yield would, therefore, require sophisticated mathe-
matical models and algorithms. 
 
Interference: Particularly for IoT devices employing unli-
censed spectrum like LoRa, WiFi, ZigBee and Sigfox, it 
provides barriers to lowering dependability and data loss. 
The licensed spectrum of a cellular network is useful for 

ensuring reliable communication, but due to band restric-
tions, using non-orthogonal multiple access techniques 
might present challenges21. 
 
Localization: Before deploying IoT devices in agriculture, 
factors such as the ability of the device to enable localization, 
minimal configuration and location, sufficient information 
gathering and dependability without generating interfer-
ence must be taken into account113. Additionally, the capa-
bility of supporting static IoT device deployment in areas 
without prior knowledge of the mobile IoT infrastructure, 
as well as IoT device roaming for mobile IoT devices, must 
be considered. 

Use case of Agriculture 4.0 

The main objectives are to enhance agricultural producti-
vity in resource-constrained environments by adopting ag-
riculture 4.0-oriented advanced solutions such as drones, 
autonomous robots, smart tractors, web applications and 
farm management solutions. The agricultural use cases for 
future farming are presented below. 

Agriculture drones and UAVs 

In order to monitor the field for soil analysis, crop health 
classification, planting, crop spraying, plant counting and 
height measurements, drainage mapping and weed pressure, 
the drones are equipped with GPS devices, cameras and 
sensors3. Due to their great speed and efficiency during 
spraying, these drones effectively spray pesticides and fer-
tilizers86. Drones equipped with sensors are being used to 
survey, imaging and map agricultural lands. Additionally, 
these sensors enable the collection of farm data with respect 
to a variety of characteristics, including air pressure and 
wind speed. The weight and size of spectral cameras have 
significantly reduced due to developments in spectral im-
aging technology, making it easy to place them on drones 
or quad-copters. Spectral cameras installed on drones can 
take images with stacks of high-resolution at a variety of 
wavelengths and up to 10 bands24. 

Intelligent farm robots 

Harvesting the crops in a timely manner is essential, as either 
early or late harvesting will significantly reduce the yield. 
So, to automate and design a more specialized harvesting 
mechanism, the use of robots like fruit harvesting arms 
has increased. Mao et al.114 designed a stereo vision for apple 
orchards that uses distance finding between the robot and 
the fruits to be harvested to distinguish them. Thangavel and 
Murthi115 proposed a system that uses key image extraction 
and optical flow techniques to harvest tea leaves. The system 
utilizes a robotic arm that selectively plucks the tea leaves 
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Figure 2. Deep learning-enabled weed detection scenario. 
 
 
based on their quality. The Robocrop In-row Weeder uses 
a weeding mechanism, control system and machine vision 
to mechanically eliminate weeds between crop rows116. It 
uses RGB colour cameras to identify crop plants and then 
utilizes internal computation to identify the crop’s centre, 
which the mechanism will rotate around24. 

Autonomous and smart connected tractors 

To meet the expectations of Agriculture 4.0, agricultural 
equipment producers must develop autonomously powered 
and smart-linked tractors, in addition to cloud-computing 
infrastructure8. With powerful computational software and 
equipment, a low-cost tractor monitoring system has been 
designed that keeps track of the health of the tractor and 
notifies users when any problems arise. These self-driven 
tractors have the advantage of avoiding previously culti-
vated rows or areas that are separated by less than an inch 
to increase precision and reduce errors during the spraying 
of insecticides. To safeguard the security of both agriculture 
and people, a smart tractor will devise operating paths and 
intelligently avoid obstacles in the field117. These tractors 
are automatically guided by GPS devices to plough the 
fields in perfectly straight rows with variations of no more 
than 2 inch. This enables farmers to cover more areas with 
higher accuracy in less time and use less fuel, chemicals 
and fertilizers by planting seeds, applying fertilizers and 
herbicides with a similar level of precision. 

Smart agriculture applications and web services 

The application layer is involved in delivering accurate  
information, notifications, predictive results and alerts to 
the farmers, mainly on their smartphones. In order to provide 
users with specific responses to their questions using the 
web resources, Niranjan et al.118 presented a chatbot based 
on the DL-based RNN framework. In addition to maintaining 
regular checks over greenhouses and fields, E-Kakashi is 

another cloud platform connected by NB-IoT cellular net-
work that also manages the environment inside a greenhouse, 
including temperature, humidity and carbon dioxide emis-
sion24. 

Case study on weed detection for smart  
agriculture 

Here, we focused on a real-time weed detection system 
using the YOLOv5 model for an agriculture field. This 
model is a DL model based on the PyTorch framework to 
detect objects in real time with high accuracy119. The 
YOLOv5 model was trained on the D5 dataset, which has 
a total of 600 object categories and is based on the Efficient-
Net architecture. The centroids of the clusters are used as 
the anchor boxes in the model to determine the size and 
shape of objects. The dynamic anchor boxes use a cluster-
ing method to group the ground truth bounding boxes into 
clusters. Additionally, it uses the spatial pyramid pooling 
layer to reduce the spatial resolution of the feature maps, 
which helps to enhance the detection of small objects be-
cause it enables the model to view objects at different 
scales. The YOLOv5 model is trained by the system using 
an image dataset of crops and weeds. The algorithm is 
trained to recognize weeds in the images and differentiate 
them from crops. The configuration for training is broken 
down into three YAML files: the hyperparameters config-
uration file specifies the hyperparameters for the training, 
the model configurations file specifies the model architecture 
and the data-configuration file explains the dataset para-
meters. Finally, depending on the task for which the model 
was trained, different metrics can be used to assess the 
output of a DL model, including classification matrix (ac-
curacy, precision, recall, F1 score) and regression metrics 
(mean absolute error, mean squared error, root mean 
squared error). Figure 2 is a detailed representation of the 
workflow for weed detection scenarios for smart architec-
ture. 
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Figure 3. Results of feature extraction training and validation. 
 
 
 We trained and tested our model using a Kaggle dataset 
on crop and weed identification data with bounding boxes 
for this implementation scenario. The collection included 
1300 images of different types of weeds and sesame crops, 
each with a bounding box annotation and an image label. 
Each image was 512 × 512 in colour, with YOLO-formatted 
labels for each of them. There were two data classes in this 
dataset: crops and weeds. The dataset was subsequently 
divided into training and validation sets. We employed 
Google Colab, a cloud-based development environment, 
for implementation. The YOLOv5 repository was then in-
stalled by cloning it from GitHub as the next step. The 
YOLOv5 train.py script was used to train the model after 
the dataset was constructed and configured. After the training 
was completed, the model was run on the validation dataset 
to assess its performance. As a hyperparameter that con-
trols how the ML model is trained, we have considered 
640 images for the training dataset with a batch size of 8 
and 250 epochs. The best model is saved as the best.pt file, 
and the best results were seen at epoch 96. It halted train-
ing early after 197 epochs were finished in 1.291 h because 
there was no improvement in the final 100 epochs. The 
performance of the proposed scenario was assessed using 
a variety of measures on the training set. It achieved a pre-
cision of 85.20%, recall of 89.60% and mAP of 93%. Fig-
ure 3 presents some common metrics for evaluating the 
output of DL models. YOLOv5 losses and metrics must be 
determined using three components: box loss, obj loss and 
cls loss (cross-entropy). Precision, recall and mean average 
precision at the intersection over a union threshold of 0.5 
are three metrics used to determine the accuracy of bound-
ing box predictions. As shown in Figure 4, we can use a 

confusion matrix to visualize the model’s classification 
performance of the model and identify the different types 
of errors. Once the model is trained and evaluated, we can 
use it to detect weeds in new images. This algorithm can 
be used to automate the process of weed detection in crops 
in conjunction with smart agriculture technologies like 
drones and robots with cameras. Thus, farmers can increase 
crop yields and reduce the usage of herbicides by promptly 
spotting and eliminating weeds, creating a more sustaina-
ble and effective agricultural system. Using the YOLOv5 
model, the system can also be expanded to detect pests 
and diseases in the field. 

Conclusion 

The expansion of IoT has changed traditional agricultural 
practices into smart precision-based standard Agriculture 
4.0. This article analyses the current state and advancements 
in the field of smart agriculture, resulting from the expan-
sion of the IoT paradigm. Initially, it covers the significant 
issues in the agriculture domain and emerging potential 
solutions, as well as layer-wise architectural building 
blocks and technical support deliverables for diverse agri-
culture scenarios. Next, it presents an overview of the current 
state of IoT-based agriculture and other integrated techno-
logy-related literature, as well as emerging trends in integra-
tion with IoT-based Agriculture 4.0. It examines real-world 
use-cases and smart agricultural scenarios of IoT in agri-
culture, along with how these technologies can affect upcom-
ing developments in smart agriculture. We have thoroughly 
explored how these technologies can affect upcoming 
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Figure 4. Results of precision-recall curve and confusion matrix. 
 
 
developments in smart agriculture, including UAVs, uni-
fied web solutions and other smart farming equipment. Fi-
nally, the challenges associated with the adoption and 
implementation of IoT-driven agriculture are discussed. 
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