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Zooplankton are key ecological components of the marine 
food web. Currently, laboratory-based methods of zoo-
plankton identification are manual, time-consuming, 
prone to human error and require expert taxonomists. 
Therefore, alternative methods are needed. In this study, 
we describe, implement and compare the performance 
of six state-of-the-art single-stage deep learning models 
for automated zooplankton identification. The highest 
prediction accuracy achieved is 99.50%. The fastest 
detection speed is 285 images per second, making the 
models suitable for real-time zooplankton classification. 
We validate the predictions of the generated models on 
unseen images. The results demonstrate the capabilities 
of the latest deep learning models in zooplankton iden-
tification. 
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ZOOPLANKTON are tiny marine organisms that serve as food 
for almost all oceanic creatures, particularly consumers in 
the food chain. They form the link between primary pro-
ducers (phytoplankton) and higher consumers (such as 
fish) in the food web. Detecting and classifying zooplank-
ton is crucial for analysing their diversity and abundance, 
which provides insights into food-web dynamics, fishery 
potential and environmental health through environmental 
impact assessment (EIA) studies. As the composition of 
zooplankton groups is sensitive to environmental changes, 
their distribution and abundance serve as proxies for the 
ecological quality of aquatic environments and climate-
change phenomena such as global warming1. Therefore, it 
is vital to study and monitor the spatial distribution, tem-
poral variability and abundance of zooplankton to under-
stand community structure, its relation to climate change, 
food-web dynamics and fishery potential. This information is 
also crucial for monitoring programmes involving EIA stu-
dies of the marine and freshwater ecosystems. 

 The systematics of zooplankton is complex as it in-
cludes numerous species and also lacks diagnostic charac-
ters. This is considered a barrier to understanding the 
patterns of zooplankton biodiversity over local to global 
scales2. The zooplankton assemblage offers several chal-
lenges in the identification and analysis of species-level 
diversity3–5. The morphological features of zooplankton 
are highly complex and require taxonomic expertise for 
accurate identification. The taxonomic identification of 
zooplankton groups is a manual process based on their 
morphological observations. It involves microscopy and is 
labour-intensive and time-consuming. As we go down the 
hierarchy (from phylum to species), taxonomic details for 
identification become finer, and it is increasingly difficult 
and time-consuming to count and classify zooplankton 
manually. To overcome these shortcomings, there is an 
urgent need to develop methods for automatic detection and 
classification strategies that also have high accuracy and 
speed. 
 Over the past two decades, there has been a significant 
increase in the development of imaging equipment and 
devices for recording plankton images, including the video 
plankton recorder6, FlowCytobot7, FlowCam8, ZooScan9 
and a mobile robotic explorer10. The growing use of imag-
ing devices has generated a large amount of image data, 
leading to the development of image-processing techniques 
to analyse the collected images of marine organisms9,11–13. 
Convolutional neural networks (CNNs) have gained popu-
larity for identifying marine organisms such as fish and 
plankton14–20. Many CNN-based object-detection frame-
works have been proposed, grouped into two categories: 
one-stage and two-stage detectors. One-stage detectors 
perform detection and localization in a single step, making 
them faster. The present study focuses on zooplankton, a 
subcategory of plankton that belongs to the animal king-
dom. A popular CNN for zooplankton classification is 
ZooplanktonNet, which consists of 11 layers and achieves 
over 93% accuracy21. 
 The primary objective of this study is to describe, evaluate 
and compare six dominant, state-of-the-art, single-stage deep 
learning networks for multi-class zooplankton classification 
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and localization. The study also presents speed and accu-
racy trade-offs of the models, as well as a comparison of 
model size. 

Materials and methods 

We provide a comprehensive overview of the six dominant, 
state-of-the-art, single-stage deep learning networks for 
automated zooplankton identification. It includes detailed 
information about the dataset, network architecture, back-
bone networks, implementation, training and performance 
evaluation. Figure 1 illustrates the methodology adopted in 
this study. 

Dataset 

In this study, a custom dataset of zooplankton images was 
developed by consolidating images from the WHOI-Plank-
ton22,23 and Kaggle24,25 datasets. The WHOI-Plankton data-
set consists of plankton images collected by the Woods 
Hole Oceanographic Institution from the Martha’s Vine-
yard Coastal Observatory in Massachusetts, USA, while 
the Kaggle zooplankton dataset was obtained from images 
collected in the Straits of Florida, USA, during May–June  
2014. For this study, we selected the five most significant 
zooplankton categories based on their relevance to marine 
ecosystems in Indian aquatic habitats. The zooplankton 
groups are Copepoda, Chaetognatha, Siphonophora, fish 
larva and Echinodermata (Figure 2). 
 
 

 
 

Figure 1. Methodology flow. 

 In this study, each zooplankton group is considered a 
distinct ‘class’ for training the neural network. To increase 
the size of the dataset, we employed data augmentation 
techniques such as rotation, horizontal flip and vertical 
flip, resulting in a total of 1629 original images. The dataset 
was divided into a training set and a validation set in the ratio 
of 90 : 10. To assess the model’s generalization on unseen 
images, we utilized a test set of 221 images. 

Methods 

Image preprocessing: The original images in the dataset 
have varying sizes and a white background, and in some 
cases, the zooplankton (regions of interest (RoI)) touches 
the edge of the image. To address this, we added a white 
background and resized the images to 224 × 224 pixels. 
Figure 3 shows the original image after pre-processing.  
Also, pre-processing is typically not required for CNNs, 
as the network extracts features from the training data during 
the training process using a multi-layer architecture. Finally, 
we annotated each image according to the zooplankton 
group present in it. 
 
 

 
 

Figure 2. Zooplankton groups: (a) and (b) Copepoda, (c) Chaetognatha, 
(d) and (e) Siphonophora, ( f ) and (g) fish larva, (h) Echinodermata 
(source: ref. 25). 

 
 

 
 

Figure 3. a, Original image (ref. 25). b, Image after pre-processing. 
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Figure 4. Single shot multibox detector with MobileNet architecture. 
 

 
Single-stage detection and feature extraction: Two-stage 
detectors for object detection split the process into two 
steps. First, they propose RoI, and in the second step, the 
proposals are classified, and their localization is adjusted. 
However, this two-step approach slows down the detection 
process, making it unsuitable for real-time applications 
that require high-speed and classification accuracy, such 
as zooplankton analysis. In contrast, single-stage detection 
systems perform classification and localization in a single 
step, making it faster and more efficient for real-time ap-
plications. The present study compares the performance of 
six state-of-the-art, single-stage detectors for zooplankton 
classification, including the single shot multibox detector 
(SSD)26, RetinaNet27 and the you only look once (YOLO) 
series of algorithms28–31. 
 We utilized a Keras-based MobileNet V2 feature pyramid 
network (FPN) feature extractor for SSD to extract feature 
maps from zooplankton images (Figure 4). This stack of 
convolutional networks is well-suited for mobile devices 
due to its small size and low latency, as demonstrated by 
Howard et al.32. Feature maps contain valuable semantic 
information that is localized in various regions of the zoo-
plankton image, and they serve as a foundation for gener-
ating box predictions for zooplankton using the detection 
head of SSD. Non-max suppression is used by SSD to 
eliminate redundant predictions. It verifies the confidence 
score for each box prediction using IoU (Intersection over 

Union) and selects the box having the highest overlap with 
the ground-truth box. 
 RetinaNet, introduced by Lin et al.27, is a recent addi-
tion to the one-stage detector family. This architecture shares 
similarities with previous object detectors, such as the use 
of ‘feature pyramids’ from SSD26 and FPN33 and ‘anchors’ 
from RPN34. It uses a ResNet architecture as the backbone 
with an FPN on top. Each FPN is connected to two subnet-
works, one for classification and one for regression. Retina-
Net addresses the class imbalance faced during training in 
one-stage detectors by introducing the concept of focal 
loss to the classification subnet. This loss bridges the ac-
curacy gap between single-stage and state-of-the-art, two-
stage detectors while maintaining comparable detection 
speeds to one-stage detectors. Figure 5 shows the Retina-
Net architecture. 
 The YOLO series of algorithms are known for their 
high detection accuracy and fast object-detection capabilities. 
YOLOv4, for instance, utilizes a single neural network that 
partitions the zooplankton image into grids35. However, to 
ensure that the algorithm is equally efficient when run on 
embedded devices, a variation of the YOLO architecture 
was introduced called Tiny-YOLO28. For the present study, 
we employed the DarkNet-53 feature extractor for Tiny-
YOLOv4. We compared the performances of Tiny-YOLOv4, 
YOLOv5 (ref. 29), YOLOv6 (ref. 30), and YOLOv7 (ref. 
31). Figure 6 shows the architecture of YOLOv5. 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 125, NO. 11, 10 DECEMBER 2023 1262 

 
 

Figure 5. RetinaNet architecture. (i) ResNet, (ii) Feature pyramid net, (iii) Class subnet (top) and (iv) Box subnet (bottom). 
 
 

 
 

Figure 6. YOLOv5 architecture. 
 
 
Implementation and training procedure: The TensorFlow2 
deep learning framework was utilized to conduct experi-
ments on the dataset. The training was carried out on the 
NVIDIA RTX A6000 GPU with 64 GB RAM, where the 
backbone networks were pre-trained on the COCO dataset36. 
To avoid lengthy training times, transfer learning was em-
ployed by reusing the weights from the COCO dataset and 
fine-tuning them while training on our custom dataset. To 
ensure efficient training and accurate predictions, we ad-
justed the training parameters, and the model was trained 
on the training set, while the validation set was used for 
evaluation during training. Figure 7 shows the progression 
of loss functions during the training of SSD MobileNet, 
RetinaNet ResNet101, Tiny-YOLOv4, YOLOv5, YOLOv6 
and YOLOv7 models. The loss function value decreases 
with training time and eventually stabilizes. Upon comple-
tion of the training process, the test set was used to assess 
the generalization ability of the models. 
 For the training process, we set an initial learning rate 
of 0.001 and a burn-in period of 1000 while utilizing a 

batch size of 64 with subdivisions of 16. Our chosen hy-
perparameters include a momentum of 0.9 and a weight 
decay of 0.0005. 
 
Performance evaluation: For the evaluation of zooplank-
ton classification and localization models, we employed 
various performance indicators, including precision, recall, 
F1 score, mean average precision (mAP), and average de-
tection time (sec). The precision and recall are defined as 
follows 
 
 Precision = True positives/True positives 
 

      + false positives, (1) 
 
 Recall = True positives/True positives 
 

      + false negatives. (2) 
 
The ‘true positives’ are positive outcomes that the model 
predicts correctly, ‘false positives’ are positive outcomes 
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Figure 7. Loss function graphs of deep learning models. 
 
 
that it predicts incorrectly, and ‘false negatives’ are nega-
tive outcomes that the model predicts incorrectly. 
 The F1 score is the weighted harmonic average of preci-
sion and recall values. 
 

 1
2(Precision × Recall) .

Precision + Re( )call
F =  (3) 

 
mAP is the average precision of all zooplankton classes. 
 

 
1

1mAP = AP ,
c

i
ic
=
∑  (4) 

 
where APi is the average precision of class i and c is the 
number of classes. 
 In addition, detection speed is a crucial metric for asses-
sing model performance, measured in frames per second 
(FPS). It represents the number of images processed per 
second, and a higher detection speed indicates better real-
time performance. Typically, a detection speed of 30 FPS 
or greater is considered to achieve real-time detection. 

Results and discussion 

In this study, laboratory-based manual analysis of zooplank-
ton samples for taxonomic identification was automated 

using six state-of-the-art, dominant categories of single-stage 
object detectors: SSD, RetinaNet and the YOLO series of al-
gorithms (Tiny-YOLOv4, YOLOv5, YOLOv6 and YOLOv7) 
for high speed and accuracy. Lightweight backbone net-
works have been used in all the object detectors to make 
them suitable for mobile applications. The performance of 
the six deep learning models was evaluated using popular 
performance evaluation metrics like precision, recall, F1 
score, mAP and FPS to identify the best-performing single-
stage network for taxonomic identification of zooplankton 
for use in real-time applications (Figure 8). Table 1 presents 
the performance metrics of different object detection mod-
els, including SSD, RetinaNet, Tiny-YOLOv4, YOLOv5, 
YOLOv6 and YOLOv7. Precision, recall, F1 score and accu-
racy were the evaluation metrics used to assess the deep 
learning models. The YOLOv5 model achieved the highest 
F1 score of 0.997 and the highest accuracy of 99.50%, in-
dicating that it is the most accurate and precise object detec-
tion model compared to the other models. Among the YOLO 
family of algorithms, Tiny-YOLOv4 and YOLOv7 achieved 
slightly lower scores than YOLOv5 with an F1 score of 
0.93 and 0.924, respectively, and mAP of 95.03% and 
95.5% respectively. YOLOv6 showed the lowest perfor-
mance. The SSD model achieved a precision of 0.719, a 
recall of 0.775 and an F1 score of 0.746, with an accuracy 
of 92.50%. The RetinaNet model achieved a precision of 
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Figure 8. Performance graphs of deep learning models. 
 

 
0.982, a recall of 0.335 and an F1 score of 0.5, with an accu-
racy of 98.22%. Although mAP of the SSD and RetinaNet 
models was high, their F1 scores were low. 
 Table 2 shows the performance of the deep learning-
based zooplankton classification models in terms of their 
FPS and size (megabytes, MB). The YOLOv5 model per-
formed exceptionally well, achieving an impressive FPS 
of 120 and a relatively small model size of 14.3 MB. The 

YOLOv6 and YOLOv7 models further improved FPS, 
achieving 215 and 285 respectively, but had larger model 
sizes of 40.6 and 70.8 MB respectively. The SSD model 
achieved an FPS of 9 with a model size of 6.5 MB. The 
RetinaNet model achieved an FPS of 8 with a significantly 
larger model size of 437 MB. Figure 9 reveals that each 
model exhibits trade-offs between accuracy and speed. 
Overall, these results indicate that the YOLOv5 model 
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outperforms the other models in terms of F1 score, mAP, 
FPS and model size, making it a promising option for real-
time applications with limited computing resources.  
 
 

Table 1. Performance metrics for deep learning models 

Model Precision Recall F1 score mAP (%) 
 

SSD 0.719 0.775 0.746 92.50 
RetinaNet 0.982 0.335 0.500 98.22 
Tiny-YOLOv4 0.930 0.930 0.930 95.03 
YOLOv5 0.996 1.000 0.997 99.50 
YOLOv6 0.987 0.889 0.972 97.17 
YOLOv7 0.916 0.934 0.924 95.50 

 
 

Table 2. Speed and size of deep learning models 

Model Frames per second Model size (MB) 
 

SSD   9 6.5 
RetinaNet   8 437 
Tiny-YOLOv4   2 260 
YOLOv5 120 14.3 
YOLOv6 215 40.6 
YOLOv7 285 70.8 

 
 

 
 

Figure 9. Speed and accuracy comparison of deep learning models. 
 
 

 
 

Figure 10. Examples of deep learning model predictions. 

Figure 10 shows the predictions of the YOLOv5 model on 
zooplankton test images. 

Conclusion 

The primary objective of this study was to evaluate the 
potential usefulness, practical implementation and compa-
rative performance of six state-of-the-art, single-stage deep 
learning models for identifying zooplankton, with a specific 
emphasis on their suitability for real-time mobile applica-
tions. 
 We implemented six deep learning models, namely 
SSD, RetinaNet, Tiny-YOLOv4, YOLOv5, YOLOv6 and 
YOLOv7, to detect and classify zooplankton from different 
taxonomic groups. The performance of these models was 
evaluated using various indicators, such as precision, re-
call, F1 score, mAP, detection speed and model size. SSD 
MobileNet and RetinaNet achieved an mAP of 92.5% and 
98.22% respectively. However, their detection speed of 9 
and 8 FPS respectively, and large model size are inade-
quate for real-time mobile applications. The YOLO series 
of algorithms exhibited the highest F1 score, accuracy and 
detection speed, while featuring some of the lightest models, 
making them suitable for deployment on hardware for real-
time mobile applications. YOLOv7 has a mAP of 95.50% 
and an F1 score of 0.927, slightly lower than that of 
YOLOv5, but it had the highest detection speed of 285 FPS. 
Overall, YOLOv5 outperformed all the other models with 
an F1 score of 0.997, mAP of 99.50% and a high detection 
speed of 120 images per second, making it ideal for real-
time applications. Additionally, with a lightweight model 
size of 14.3 MB, YOLOv5 could meet the requirements for 
deployment on embedded platforms. In a forthcoming study, 
our collected data will be utilized. We intend to optimize the 
model to ensure its suitability for deployment on embedded 
platforms specifically designed for field use. 
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