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One of the main challenges in reservoir characterization 
is the accurate prediction of lithology and saturation 
heterogeneities. In this study, a methodology has been 
developed that combines Monte Carlo simulation (MCS) 
and rock physics modelling (RPM) to explore subsurface 
properties and characterize reservoirs of the Krishna–
Godavari (KG) Basin, India. RPM and MCS were effecti-
vely applied to well-log data in this study to discriminate 
distinct lithologies and fluid types, as well as uncertainty 
analysis. Various diagnostic models, such as the contact 
cement model, constant cement model and friable sand 
model, were used for this purpose. The cementation of 
reservoir sand ranged from 1% to more than 4%, ac-
cording to the analysis. The gas sand reservoir, cap 
shale and brine sand were categorized using a rock 
physics template (RPT) model built over VP/VS against 
the AI cross-plot. Gas saturation was appropriately in-
dicated by the RPT model produced from the shallow 
marine environment. The present study proves that 
RPM developed in the first part of the study may be 
used to perform uncertainty analysis using MCS. We 
simulated three different lithologies in this study, viz. 
shale, brine sand and gas sand, and then categorized 
them using VP/VS versus P-impedance cross-plot.  
 
Keywords: Log facies, reservoir, rock physics modelling, 
simulation, uncertainty analysis. 
 
IN the present study, two major techniques, namely rock 
physics modelling (RPM) and Monte Carlo simulation 
(MCS), discriminate subsurface lithology and fluid content. 
Rock physics describes the link between rock parameters 
like porosity, mineral fractions and water saturation and 
elastic properties like P- and S-wave velocity and density, 
which drive seismic response. As a result of RPM, rock 
properties that were previously only obtainable through 
drilling can now be approximated using remotely sensed 
data. On the other hand, MCS is a model used to predict the 
probability of different outcomes when the intervention of 
random variables is present. It aids in the understanding of 

how risk and uncertainty affect prediction and forecasting 
models.  
 The area of experimental mathematics known as Monte 
Carlo methods focuses on experimentation with random 
numbers. This simulation requires well data for the genera-
tion of random numbers, simulating various distributions 
and estimating the accuracy of results. MCS aids in the as-
sessment of the impact of data uncertainty on calculations 
performed with analytical approaches. Measurement of re-
sistivity, bulk density, interval transit time, self-potential, 
natural radioactivity and hydrogen content of rocks in a 
borehole yields data that provide quantitative information 
and hence help interpret subsurface properties. Which is 
further produce porosity, formation-water resistivity, shale 
volume, water saturation and permeability by applying 
various analytical relationships. The hydrocarbon volume 
and productivity are then calculated using these reservoir 
characteristics. Well-log analysis is a crucial step in defin-
ing and analysing hydrocarbon-bearing zones. This method 
entails the interpretation of well-log data within a well-bore 
to establish a connection between reservoir properties, such 
as rock physical and chemical properties and lithology and 
petrophysical parameters, such as porous media properties.  
 In addition, rock physics models are utilized to bridge 
the gap in seismic data obtained in the time domain and is an 
indirect measurement of subsurface properties in the form 
of elastic properties. Petrophysical data are gathered from  
direct measurements in a well-bore. The link between rock 
parameters such as porosity, mineral fractions and water 
saturation, and elastic qualities such as P- and S-wave velo-
city and density, which drive seismic response, is described 
by rock physics. Rock properties that were previously only 
obtainable through drilling can now be determined using 
seismic data that can also be called remotely sensed or indi-
rectly sensed data using the application of RPM as a tool.  
 Petrophysicists studied porous media features such as po-
rosity, permeability, water saturation, fluid recognition, 
resistivity, and shaliness, particularly in reservoir rocks 
and contained fluids1–3. Based on the observed petrophysical 
and reservoir parameters, rock physics models are used to 
estimate seismic properties4,5. Rock physics and seismic 
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Figure 1. Flowchart of the adopted methodology. 
 
 
properties are influenced by geological phenomena such 
as reservoir heterogeneity, sorting, digenetic quartz cementa-
tion on sandstone, clay content and depositional features6,7. 
Rock physics studies and the construction of a reservoir 
model will aid in the inversion of seismic amplitude versus 
offset as well as the recognition of fluid type contained in 
the reservoir zone.  
 This study analyses the application of the constant cement 
model as part of RPM8, the friable sand model9, the touch 
cement model10 and the modified Hashin–Shtrikman (HS) 
bounds combined with the Hertz–Mindlin (HM) theory11,12. 
A method of replacing one fluid with another is known as 
the Gassmann fluid replacement. The Gassmann equation 
was used to examine the influence of seismic velocity and 
impedance on pore fluids since the bulk modulus changes 
as the pores are filled with various fluids13,14. In rock physics 
situations linked with reservoir zones, fluid replacement 
modelling is utilized to modify porosity, water saturation 
and oil density. The main purpose of this study was to deve-
lop a rock physics model of elastic modulus and porosity, 
as well as a rock physics template (RPT) using existing 
geological data, including petrophysical characteristics15–17.  
 Further, the degree of uncertainty present in borehole 
measurements, as well as the errors inherent in subsequent 
computations, were determined. Information on heteroge-
neity, tool response inconsistencies, laboratory measurement 
errors, and errors related to other analytical constants con-
tribute to uncertainties that are difficult to predict at each 
borehole depth interval. Furthermore, inaccuracies in the 
measurements and parameters utilized in the analytical re-
lationships were carried over to the final solution, which 

did not appropriately account for them18,19. A suitable and 
easy process is required to quantify the uncertainty in each 
observed and estimated value20. MCS is an example that 
has been used to assess the level of uncertainty in well log-
dependent parameters.  
 MCS is a mathematical technique that uses random varia-
bles to simulate the risk or uncertainty of a system. The 
random variables or inputs are modelled using probability 
distributions such as uniform distribution, log–normal and 
others. Various iterations or simulations are used to generate 
pathways, and the outcome is determined using appropriate 
numerical computations21,22. MCS is the most reliable tool 
when a model has unknown parameters, or a dynamic, com-
plicated system needs to be evaluated. For the modelling 
of new, precise and accurate critical values for discordancy 
and significance tests, the ground-breaking Monte Carlo 
approach is employed. A probabilistic approach estimates 
the risk associated with managing experimental data. Several 
approaches for linking rock physics to seismic reservoir 
characterization are discussed in this study. In this regard, 
the first well-log analysis was performed to determine the 
possible zones of well A2A. RPM and RPT were used to 
describe the rock and fluid types in the zone of interest. 
These are deterministic rock physics approaches that illus-
trate how to project the findings of RPM onto a cross-plot 
of VP/VS ratio versus P-impedance that will enable us to 
establish a probabilistic understanding of the hydrocarbon-
bearing zones, which are also distinguished as a pay zone. 
Following this deterministic identification of the hydrocar-
bon region, we will discuss a statistical clustering and 
classification approach applied to the data. MCS results 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 125, NO. 11, 10 DECEMBER 2023 1199 

 
 

Figure 2. Location and stratigraphy of the study area. 
 
 
obtained from different models were combined to provide 
the complete petrophysical uncertainty assessment, valid 
statistical results and probabilities based on well log-depen-
dent parameters. Thereafter, a new well (A5) was used to 
cross-validate the results found in well A2A. These analyses 
were performed to well-log data only according to data 
limitations. Figure 1 shows a flow chart to illustrate the 
methods adopted in this study. We have used the Hamp-
sonRussell (ver.11.0.2) and Matlab (ver. 2021b) software 
for analysis.  

Study area  

The present study uses data from the KG Basin, which is a 
peri-cratonic, passive margin basin. The KG Basin is a 
huge deltaic plain in Andhra Pradesh, India, generated by 
two big east coast rivers, the Krishna and Godavari, and the 
nearby portions of the Bay of Bengal into which these rivers 
discharge their water23. On the east coast of India, the KG 
Basin is a confirmed continental margin petroliferous basin. 
Its on-land portion encompasses roughly 15,000 km2, while 
the offshore portion covers about 25,000 km2 and has iso-
baths of up to 1000 m. The sediments in the basin are 
roughly 5 km deep, dating from the Late Carboniferous to 
the Pleistocene epochs. 
 Commercial hydrocarbon accumulations in the KG Basin 
range from the oldest Permo–Triassic Mandapeta sandstone 
on land to the youngest Pleistocene channel levee complexes 
offshore. In the on-land and offshore zones of the KG Basin, 
there are several oil and gas fields. Entrapments can be 
found in Permo–Triassic through the Pliocene strata24. Ter-

tiary hydrocarbon entrapments have only been identified off-
shore, but Paleogene to Permo–Triassic entrapments have 
been reported on land in the East and West Godavari sub-
basins24. The basin comprises four petroleum systems, 
which can be loosely grouped into two: pre-Trappean and 
post-Trappean, according to their distinct tectonic and geo-
logical properties25.  
 The Bapatla and Tanuku horsts split the KG basin into 
three sub-basins: Krishna Basin, West Godavari Basin, 
and East Godavari Basin (Figure 2). The reservoir rocks in 
this Basin are sandstone, shaly sandstone, siltstone and 
sandy siltstone, and hydrocarbon deposition is expected in 
a variety of traps, including anticlines, faults, unconformities, 
lenses, pinch-outs and their combinations. Hydrocarbon 
accumulators are anticipated to be abundant in nontradi-
tional stratigraphic traps such as channel fill, regional sand 
pinch-outs and truncations26.  
 Paleocene reservoirs are produced in a variety of gas 
fields, particularly in the East Godavari sub-basin. The 
Tatipaka, Pasarlapudi, Kadali and Manepalli fields are loca-
ted on the ground, while GS-8 is in the Basin offshore. The 
hydrocarbon-generating centres in the Paleocene suggest fair 
to rich organic material on the basinal side. The existence 
of gas and its pressure in this series suggest that the Basin 
has Palaeocene potential. In this age group, 10 hydrocarbon 
pools have already been found. The Eocene gas accumula-
tion can be seen in Elamanchili, Tatipaka and Pasarlapudi, 
among other places. Oil is produced at the Mori prospect. 
These oil fields, like GS-38 in the KG basin, suggest that 
the Eocene sequences have significant hydrocarbon poten-
tial. Oil and gas entrapment may be possible in drape folds 
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on a tilted, narrow, fault block. Already, eight hydrocarbon 
pools have been reported25,27. The Tertiary offshore section 
comprises deposition systems ranging from the shoreline 
to deep-water subsurface channels and fan sandstone. The 
main objective of exploration in the KG Basin was to study 
Miocene to Pleistocene, submerged, intra-rift, meandering 
river channels and submarine fan sandstones. These sand-
stones came from the Godavari river system and were de-
posited on the mid to lower slopes. Basin structural change 
was primarily caused by sediment loading and subsequent 
collapse of the shelf edge, resulting in genetically related 
growth fault and toe thrust pairs. Two significant periods 
of this happened: Late Eocene to Early Miocene, and Late 
Miocene through Pliocene, and onto the present. Primary 
structures included major north-east-trending down-to-basin 
growth faults and genetically related younger toe thrust 
complexes. Furthermore, traps formed by an up-dip pinch 
out of linear-slope, fan-channel complexes are anticipated 
to contribute to stratigraphic trapping24. During the Jura–
Cretaceous break-up between India and Antarctica, the Basin 
comprised a sequence of NE–SW-trending en-echelon horsts 
and grabens. These NE–SW systems have overprinted the 
NW–SE-trending Permo–Triassic Pranhita–Godavari Graben 
in the offshore part of the Basin. Figure 2 shows the loca-
tion and stratigraphy of the study area.  
 Several logs have been drilled in this area, but only one 
well, viz. A2A has been used in this study for analysis. 
This well contains sonic, density, neutron, gamma-ray, resis-
tivity, spontaneous potential and calliper logs. It is located 
in deeper water at a depth of 703 m in the KG Basin, off-
shore eastern (Andhra Pradesh) India. It reveals geologic 
settings starting from coastal basin to delta, shelf-slope 
apron, deep-sea channel, deep-water fan and turbidite com-
plex. It has a complex architecture of the stacked, deep-
water, sinuous channels and the associated crevasse 
splays, natural levees and over-bank deposits. It mainly in-
cludes the Upper Pliocene gas reservoirs that comprise 
both channel and fan facies. The reservoir shows a wide 
variation in grain size, starting from pebbly to fine-grained 
sandstone and siltstone, which indicates a sand–silt to 
mud-rich turbidite system23,28.  
 The well A2A penetrated a section from Recent/Pleisto-
cene at the midline to Early Pliocene at total depth. It is 
divided into three major sections.  
 
(i)  Recent to Pleistocene (up to 1220 m) – This section 

represents low energy, moderately deep-water marine 
facies and comprises claystone with rare sand stringers.  

(ii)  Pleistocene to Late Pliocene top (1220–1814 m) – 
This section predominantly comprises low-energy, 
moderately deep-water marine sediments. It comprises 
mainly claystone with traces of sandstone at places. 
The average gamma and resistivity values in this sec-
tion are 75 API and 0.8 ohm-m respectively.  

(iii)  Late Pliocene to Early Pliocene top (1851–2351 m) – 
This section represents high-energy, moderately deep-

water marine channels and fan sediments. It comprises 
an inter-bedded claystone–sandstone sequence, with 
submarine channel and fan sandstone occurring as a 
series of seven stacked sandstone bodies.  

 
A massive sandstone unit from 2064 to 2073 m is domi-
nantly very coarse-grained and pebbly with pyrite nodules. 
Traces of calcareous cemented medium to coarse-grained 
sands are present with nil visible porosity. The inter-bedded 
claystone is greyish-black, non-calcareous, homogeneous, 
soft to firm, slightly hydrated and sub-blocky. The average 
gamma value is 95 API, and resistivity averages around 
15 ohm-m. In the depth range of 2103–2131 m, the sandstone 
consists of translucent, colourless to pale white quartz 
grains. These grains are coarse to very coarse, occasionally 
pebbly, loose and moderately well-sorted. They show a pitted 
surface with a rare clay matrix and good visual porosity. 
The inter-bedded claystone is dark grey to greyish-black, 
sub-blocky to blocky, moderately firm and non-calcareous. 
Trace micro carbonaceous debris, bioclastics and pyrite 
nodules are present. The average gamma and resistivity 
values in this zone are 100 API and 6–8 ohm-m respectively. 
The neutron porosity and bulk density show a crossover in 
this zone, which indicates the presence of gas in the for-
mation.  

Well-log analysis 

Well-log analysis was the initial step to gather basic infor-
mation about the petrophysical parameters. It is also an 
essential step that needs to be performed before RPM and 
MCS. It is important to understand the petrophysical pro-
perties of the reservoir and predict elastic parameters. 
Well logs have been effectively employed in both explora-
tion and construction wells, and they are frequently used to 
determine the depth and thickness of active zones29–31. Physi-
cal measurements (sonde) are taken with instruments lowe-
red into the hole (geophysical logs), and laboratory testing 
on core samples is utilized to aid logging32,33. The for-
mations are exposed to the well-bore immediately after 
the well is dug, and this point in the drilling process is best 
suited for analysing rock characteristics because of open-hole 
logging techniques. In wells with complex trajectories, log-
ging equipment is utilized as a part of the drilling tool as-
sembly. This procedure is known as logging while drilling 
(LWD)34. Temperature, pressure, gamma, neutron, calliper 
log and resistivity are the important logs to consider. The 
primary goal of petrophysical well-log analysis is to con-
vert drill measurements into reservoir parameters such as 
permeability, porosity, oil saturation, water saturation, 
mineralogy, etc. Static reservoir modelling involves inte-
grating core data, log and engineering data to understand 
the behaviour of the reservoir under in situ conditions35.  
 A single well, A2A, was examined in this study for sub-
surface features. Thereafter, a new well (A5) was introdu-
ced to cross-validate results found in well A2A. The 
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Figure 3. Various composite log and petrophysical analysis results. 
 
 

Table 1. Calculated and measured petrophysical parameters of the two zones of interest 

Depth (m)  2061–73 2103–31 
 

Thickness  12 28 
Shale volume  0.34 0.37 
Vp/Vs  1.76 1.89 
Hydrocarbon saturation  0.74 0.60 
Effective porosity  31 30 
Water saturation  0.25 0.39 
Fluid mobility  10,333.27 3,250.92 
True resistivity  15.24 6.76 
Gamma ray  73.55 75.64 
Neutron porosity  26 32 
Bulk volume water  0.08 0.12 
Shear modulus  2.54 2.25 
Young’s modulus  6.16 5.82 
Bulk modulus  4.89 5.15 
Poisson ratio  0.23 0.29 
Formation  Rajmundary sandstone – Ravva Formation Rajmundary sandstone – Ravva Formation 
Geological age  Late Pliocene to Early Pliocene Top Late Pliocene to Early Pliocene Top 

 
 
petrophysical parameters of hydrocarbon-bearing zones 
were estimated using well-log responses such as gamma-ray, 
resistivity, density, velocity and neutron porosity logs. 
Figure 3 shows well-log responses measured in well A2A 
plotted against depth. This plot was analysed and inter-
preted in the context of the prospective zone. Two major 
anomalous zones ranging between depths of 2061–2073 m 
with a thickness of 12 m and depth of 2103–2131 m with 
a thickness of 28 m were identified. These zones showed 
low density, low gamma-ray, high S-wave velocity, low P-
wave velocity, high resistivity value, low water saturation 
and high permeability. These variations of petrophysical pa-
rameters reveal the presence of the reservoir in these zones.  
 Further, the crossover between effective porosity and 
neutron porosity was also observed in these anomalous 
zones, indicating gas formation. The other petrophysical 
parameters that were not directly measured from the well 

logging were also calculated using empirical relationships. 
Table 1 presents their average values in the reservoir 
zones. The major petrophysical parameters were water 
saturation (Sw) varying from 25% to 39%, effective porosity 
(φe) ranging from 30% to 31%, permeability from 722 to 
3907 milli Darcy and shale volume (Vsh) varying from 
34% in zone 1 to 37% in zone 2.  
 Using P- and S-wave velocity and density of well A2A, 
rock mechanical parameters were estimated. The follow-
ing equations were used to determine the mechanical para-
meters.  
 

 Poisson ratio (σ) = 

2
P

S

2
P

S

2
1 ,
2

1

V
V

V
V

   −     
   −     

 (1)  
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Figure 4. Variation of mechanical parameters with depth. 
 
 
 Shear modulus (G) = 2

S ,V ρ  (2)  
 
 Young’s modulus (Y) = 2G(1 + σ),  (3)  
 

 Bulk modulus (K) = 2 2
P S

4 .
3

V Vρ  − 
 

 (4)  

 
The cohesive strength (S0) was calculated as follows.  
 

 9
0 sh sh0.025 10 [0.008 0.0045(1 )].YS V V

K
−= ∗ ∗ + −  (5)  

 
The unconfined compressive strength (UCS), which is a 
measure of the strength of a material was calculated as 
follows: 
 

 0UCS .
0.289

S
=  (6)  

 
In Figure 4, the variation of mechanical parameters estimated 
is plotted against depth. From the figure, one can notice 
that VP/VS, shear modulus, Young’s modulus and UCS in-
crease with depth in both the zones (2061–2073 m and 
2103–2131 m), whereas the bulk modulus and Poisson ratio 
decrease with depth. Table 1 gives the average quantita-
tive values of these mechanical parameters in the prospec-
tive zones.  
 Figure 5 shows cross-plots generated for the calculated 
and estimated petrophysical parameters along with mechani-
cal parameters. These cross-plots help identify the hydro-
carbon-bearing zones more accurately as they are generated 

using two or more petrophysical parameters, which show 
jointly more variation in the reservoir zone, whereas a 
single plot of petrophysical parameters shows only a small 
variation. Figure 5 highlights the hydrocarbon-bearing 
zones by an ellipse in each cross-plot. After estimating 
petrophysical and mechanical parameters, the next step is 
utilising them in performing RPM.  

Rock physics modelling 

RPM is a technique that helps construct a velocity–porosity 
trend compatible with local geological parameters by 
providing practically meaningful information about the 
rock properties. Furthermore, by providing useful information 
regarding the diagnostic or depositional process, velocity–
porosity trends can aid in inferring the rock microstruc-
ture36,37. 
 Effective elastic medium or bound and mixing laws, 
granular media, fluid effect on wave propagation and em-
pirical models are the several types of rock physical models. 
However, granular media are used in the majority of theo-
retical rock physics models. These granular media models 
infer rock microstructure by revealing porosity, sorting ce-
mentation and sandstone stress effects. They can be em-
ployed by fitting the effective elastic medium theoretical 
model curve to a data trend, assuming that the microstruc-
ture of the sediment is the same as that used in the model. 
A modelling equation specifies how a rock reacts to a spe-
cific stimulus, such as a change in pressure (seismic waves), 
temperature, or an electric/magnetic current15,16,38. Multi-
ple modelling equations can be integrated to develop a 
single model that connects well and seismic data by 
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Figure 5. Cross-plot of petrophysical parameters and mechanical parameters of the KG-D6-A2A well. These cross-plots are: a, density versus P-
wave velocity; b, density versus P-impedance; c, S-wave versus P-wave velocity; d, S-wave velocity versus density; e, VP/VS ratio versus P-impe-
dance; f, VP/VS ratio versus bulk modulus; g, shear modulus versus bulk modulus; h, Young’s modulus versus bulk modulus; i, Poisson ratio versus 
bulk modulus. The anomalous zone is highlighted by an ellipse.  
 
 
describing the elastic response of a rock and its petrophysical 
features. The elastic response of a rock is mostly determined 
by its composition (minerals and fluids) and texture (spa-
tial distribution of minerals and porosity). Several models 
like the Voigt and Reuss bounds39,40 Hill average41, Hertz–
Mindlin contact model11, Walton model42 cemented sand 
model9, and soft sand models43 can be utilized to develop 
a rock physics model. Many other models can be used to 
link well and seismic data. However, the friable sand 
model, contact cement model and constant cement model 
are the most popular.  

Friable sand model 

This model was developed in 1996 by Dvorkin and Nur. It 
is used for high-porosity sand and involves determining 
the elastic modulus of dry rock in the absence of cement 
at spherical grain contacts. This model assumes porosity 
reduction from a well-sorted end-member with critical poro-
sity (φc ~ 40%) due to depositional solid matter away from 
the grain contacts, resulting in the eventual stiffening of 

the rock. Critical porosity distinguishes the behaviour of 
acoustic wave velocity in porous media on the load-bearing 
frame and fluid-bearing suspension. Each rock type has a 
distinct pore geometry and pore structure, and hence a 
characteristic bulk modulus relationship pattern with poro-
sity. The trend observed between bulk modulus and porosity 
of each rock type intersects the x-axis at a certain porosity 
value, referred to here as critical porosity. As a result of 
deteriorating grain sorting, such porosity loss has been 
documented. The elastic modulus of the dry, well-sorted 
end-member at critical porosity was estimated using the 
Hertz–Mindlin contact theory11, with zero porosity repre-
senting the mineral point. The unconsolidated line con-
necting these two points is mathematically represented by 
the modified lower Hashin–Shtrikman (MLHS) bound. The 
following relationships can be used to compute the effec-
tive modulus:  
 

 
1
32 2 2

c
HM 2 2

(1 )
,

18 (1 )
n

K P
φ µ

π θ
 −

=  − 
  (7)  
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where KHM and µHM are the dry rock bulk modulus and 
shear modulus at critical porosity φc respectively and n the 
coordination number, P the net confining pressure, which 
is equal to the effective pressure (assuming that the Biot 
coefficient is one); µ the solid phase shear modulus (mine-
ral modulus) and θ is the solid phase Poisson ratio.  
 The effective bulk modulus (Kdry) and shear modulus 
(µdry) of the dry frame can be calculated as follows: 
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where φ is the porosity.  

Contact cement model  

Dvorkin et al.10 developed this model in 1994. The elastic 
modulus of dry rock is calculated using this model when 
cement is in the grain contacts, and the grains are assumed to 
be spherical. Digenesis produces cementation in the form 
of quartz, calcite or other minerals, and sand is likely to 
become cemented sandstone during burial. The contact 
cement considerably increases the rigidity of sand by rein-
forcing the grain connections44,45. The contact cement model 
describes the reduction in porosity from the original sand 
pack due to the homogeneous deposition of cement layers 
on the surface of grains, which dramatically increases velo-
city as porosity decreases. The mathematical formulation 
of this model is based on the rigorous contact problem solu-
tion by Dvorkin et al.10. Equations (11) and (12) demon-
strate how the effective bulk modulus (Kdry) and shear 
modulus (µdry) of dry rock can be calculated.  
 

 c c n
dry

(1 )
,

6
n M S

K
φ−

=  (11)  

 

 dry c c
dry

3 3 (1 )
,

5 20
K n Sτφ µ

µ
−

= +  (12) 

where µc is the shear modulus, Mc = (Kc + 4/3Gc) is the 
compressional modulus and Kc is the bulk modulus of the 
cement material. Sn and Sτ are constants and can be ex-
pressed as follows.  
 
 2( ) ( ) ( ),n n n n n n nS A B Cα α= Λ + Λ + Λ  (13)  
 
where An(Λn) = –0.024153Λn

–1.3646, Bn(Λn) = 0.20405 × 
Λn

–0.89008 and Cn(Λn) = 0.00024649Λn
–1.9864. 

 
 2( ) ( ) ( ),S A B Cτ τ τ τ τ τ τθ α θ α θ= Λ + Λ + Λ  (14)  
 
where Aτ(Λτθ) = –10–2 (2.26θ2 + 2.07θ + 2.3) × 
Λτ

0.079θ2 + 0.1754θ – 1.342, Bτ(Λτθ) = (0.0573θ2 + 0.0937θ + 
0.202)Λτ

0.0274θ2 + 0.0529θ – 0.8765, Cτ(Λτθ) = 10–4(9.65θ 2 + 
4.94θ + 3.1)Λτ

0.01867θ2 + 0.4011θ – 1.8186, 
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The terms θ and µc are the Poisson ratio of the dry mineral 
frame and cement respectively, and α is the amount of 
contact cement for the cemented layer around the grain.  

Constant cement model  

Avseth et al.46 devised this model in 2000, which combines 
the friable sand and contact cement models. It is assumed 
that all sands contain the same quantity of cemented elements 
but have varying porosities. The loss of porosity is a result 
of deteriorated sorting and cementation. By changing the 
well-sorted end-member porosity (φb) and smaller porosity 
interpolated with the MLHS bound11, this model can be 
used to compute the effective dry modulus of the granular 
assembly. The constant cement depth model for clean sand 
gets its name because the amount of cement is generally 
connected to depth. Sorting, on the other hand, is linked to 
lateral flow energy change during sediment deposition8.  
 It is assumed that sands with different porosities have 
the same contact cement, and that variance within this group 
is due to non-contact pore filling (e.g. sorting). Due to 
cementation, porosity drops from the critical limit, φc to φb 
(cemented porosity). Equations (15) and (16) are used to 
estimate dry-rock bulk modulus and shear modulus with a 
lower porosity (φ).  
 

 b b b
dry

b b b

/ 1 / 4
,

(4 / 3) (4 / 3) 3
K

K K
φ φ φ φ µ

µ µ
− = + − + + 

 (15)  
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Figure 6. P-wave velocity–porosity cross-plot with variable cement lines (starting with the top red line of 6% 
cement and a step of 0.5% below) overlaid for well A2A, coloured by depth logs.  

 

 
 

Figure 7. Rock diagnostic plot between (a) P-wave velocity and porosity, (b) shear modulus and porosity and (c) bulk 
modulus and porosity of the entire data from well A2A. The models, namely constant cement, contact cement, and friable 
sand are imposed in these plots.  

 
 
where φb is the porosity of the well-sorted end-member; 
Kb and µb are the dry-rock bulk modulus and shear modulus 
at this porosity respectively and Kdry and µdry are the dry-
rock bulk modulus and shear modulus at smaller porosity 
respectively. µdry can be calculated as follows: 
 

 b b b b b
dry

b b b

/ 1 / 9 8
.

6 2
K

z z K
φ φ φ φ µ µ

µ
µ µ µ

− +   = + −   + + +   
 (16)  

The three above-mentioned models have been used to 
link elastic and seismic properties with geologic proper-
ties and estimate how geologic trends may influence the 
lithology and fluid sensitivity of seismic parameters. Data 
from well A2A have been used for this purpose. Using 
the Hertz–Mindlin theory, the MLHS bounds have been 
incorporated. A full description of the methods used is 
given below.  
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Figure 8. Rock diagnostic plot between (a) P-wave velocity and porosity, (b) shear modulus and porosity and (c) between bulk 
modulus and porosity of reservoir depth (2061–2073 m and 2103–2131 m) from well A2A. Rock physics modelling (RPM) models 
namely constant cement, contact cement and friable sand are also plotted.  

 
 
 To develop a rock physics model, various velocity–poro-
sity trends were extracted from the full volume of data, 
and these independent trends were assigned to suitable 
depth intervals and depositional sequences. This is referred 
to as ‘rock physics diagnostic’ (RPD). The well log and 
core data are usually used to perform RPD46. It describes 
rock texture, such as the position of digenetic cement, grain-
size sorting and clay impact. P- and S-wave velocities are  
often not considered the best fluid indicators due to their 
coupling effect through the shear modulus and bulk density. 
In the modulus–porosity plane, rock physics patterns appear 
more discrete than in the velocity–porosity plane47. The 
bulk modulus is sensitive to pore fluid (water) and deforma-
tion caused by a seismic wave, which causes pore volume 
to change. Similar fluids do not affect the shear modulus. 
The rock physics plane, which can be (i) velocity–porosity, 
(ii) modulus–porosity and/or (iii) impedance–porosity is 
the workspace for rock physics study. Considering velocity–
porosity planes, one prefers elastic modulus–porosity 
planes to correlate changes in the fluid that impact bulk 
modulus for diagnosing rocks.  
 In Figures 6–8, the theoretical rock physics models are 
superimposed on elastic properties from selected depth inter-
vals of well A2A in velocity–porosity and modulus–porosity 
planes for diagnostic purposes. The cross-plots show that 

as cementation increases, the P-wave velocity and elastic 
modulus also increase. The velocity–porosity and elastic 
modulus–porosity cross-plots for well A2A show significant 
scattering, and clay is responsible for the scattered impact. 
Figure 6 shows the P-wave velocity versus total porosity 
cross-plot for a depth range from 2000 to 2250 m. The red 
lines show the constant cement rock physics model of dif-
ferent volume fractions of cement.  
 For well A2A, data points lying on the upper curve of 
the velocity–porosity plane represent all the cement laid 
precisely at grain contacts and sloped flat (Figure 6). Data 
points that fall between the constant cement lines define 
the homogeneous deposition of cement on grain surfaces. 
Data points on the upper curve of the bulk modulus–porosity 
plane for well A2A occur at grain contacts with a steep 
slope. Between the constant cement lines, the elastic modu-
lus–porosity plane points are also soft on the steep slope 
(Figure 7). The slope disparities between the velocity–
porosity and modulus–porosity planes could be attributed 
to variance in the micro-cracks. The continuous cement line 
has the maximum data points (4%), indicating uniformly 
applied cement on the grain surface.  
 The constant cement model describes the reservoir 
zones found in the depth intervals 2061–2073 m and 
2103–2131 m (Figure 8). The RPD plot shows the point 
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Figure 9. VP/VS versus AI cross-plot in which four zones have been interpreted (left) and attributed to different types of  
lithology and fluids in the Krishna–Godavari (KG) Basin (right) for (a) well A2A and (b) well A5.  

 
 
distributions that expose various geological patterns, varying 
from lower to higher porosity values. In well A2A, a high 
cementation of more than 4% is observed.  

Rock physics template 

RPTs have geologically constrained rock physics models 
used to simulate lithology and fluids for which charts and 
graphs are generated. They generate complex graphical over-
lays of one or more rock physics models, considering model 
constraints and reservoir properties, including porosity 
and water saturation48,49. RPTs add calibrated model tem-
plates to the wider geosciences and interpretation group, 
reducing some of the complexity and details of RPM. Val-
idation of RPT analysis depends upon the local geological 
information and the use of a proper model. Before the ap-
plication of RPT, the first clustering was performed on the 
data from a cross-plot of VP/VS and acoustic impedance. 

Figure 9 a depicts analyses of well A2A, whereas Figure 
9 b depicts well A5. The clustering aims to identify four 
main zones, i.e. shale formation, brine sand, cement, and 
gas-sand formation. Auto-clustering was performed using 
statistical K-means clustering after facies classification, 
which comprised gas sand, brine sand and shale as facies, 
and each facies had its criteria set. This study is based on 
the utilization of the VP/VS ratio as the criterion for facies 
classification. The well-log property values were used to 
define the cut-off between the different facies (see Figure 
9 a and b). After RPM and clustering analysis, the next 
step was to implement RPT.  
 To build reservoir templates, rock physics diagnostic 
models and Gassmann fluid substitution relations are neces-
sary. Before applying templates to seismic data, RPT analy-
sis of well-log data must be done to calibrate the templates 
to local geology. In this study, we have performed RPT of 
well data only. RPT can be a valuable method for verifying 
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hydrocarbon-bearing zones and reducing exploration risks. 
The effectiveness of RPT analysis is determined by the 
geological details of the reservoir and the model used.  
 RPT for clastic rocks calculates the elastic modulus of 
saturated, porous rock filled with fluid (brine or hydrocar-
bon). To evaluate the fluid substitution effect in an RPT 
and elastic modulus at a specified saturation, Gassmann’s 
equation has been used13,14. The Biot–Gassmann fluid re-
placement model was used to determine the saturated elastic 
modulus of reservoir sand from the dry modulus for poro-
sity ranging from zero to critical porosity with changing 
water saturation13,50. It can be expressed mathematically 
as follows: 
 

 

2
dry

Mineral
sat dry

dry

Fluid Mineral Mineral

1
,

1

K
K

K K
K

K K K
φ φ

 
− 

 = +
−

+ −
 (17)  

 
where Ksat represents saturated bulk modulus, Kfluid the 
fluid bulk modulus, Kdry the dry bulk modulus and KMineral 
the mineral bulk modulus.  
 The shear modulus of the fluid-saturated rock is given 
by eq. (18), where shear modulus of the fluid is zero.  
 
 µsat = µdry. (18) 
 
The bulk density (ρb) of fluid-saturated rock is given by: 
 
 b g fl(1 ) ,ρ ρ φ ρ φ= − +  (19)  
 
where ρg represents the density of gas and ρfl the fluid 
density.  
 The effective bulk modulus of fluid phases can be calcu-
lated similarly to the solid phases. Water, oil and gas are 
possible components of the fluid phase. Equation (20) 
gives the effective bulk modulus of an immiscible system 
(KFluid_av), provided all the individual fluid phases remain 
in perfect hydraulic communication, that is, the pressure 
in the gas is the same as that in oil and water51. 
 

 gasbr oil

Fluid_av br oil gas

1 ,
SS S

K K K K
= + +  (20)  

 
Kbr is the brine bulk modulus, Koil the oil bulk modulus, 
Kgas the gas bulk modulus, Sbr the brine saturation, Soil the 
oil saturation and Sgas is the gas saturation.  
 As shown in eq. (7), bulk density of the rock fluctuates 
as the pore fluid density changes. Hence, fluid density ρfl, 
i.e. density of the fluid mixture – water and hydrocarbon 
is defined as: 
 
 fl w w w hc(1 ) ,S Sρ ρ ρ= + −  (21)  

where Sw is the water saturation, ρw the water density and 
ρhc is the hydrocarbon density.  
 The fluid modulus (Kfl) as defined by Wood52 in 1941 
can be expressed as:  
 

 w w
fl

w hc

1
,

S S
K

K K
− = + 

 
 (22)  

 
where Kw is the water bulk modulus and Khc the hydrocar-
bon modulus.  
 Fluid substitution is required to determine Ksat and the 
P- and S-wave velocities are then computed using the fol-
lowing equations: 
 

 sat
P

b

,
K

V
µ

ρ
+

=  (23)  
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b

.V µ
ρ

=  (24)  

 
Lithology, minerals, burial depth, diagenesis (cementation), 
pressure and temperature from well log, core sample and 
well testing data are all geological constraints on RPT. 
VP/VS versus acoustic impedance (AI), the typical form of 
a template is an excellent indicator of lithology and fluid in-
dicators46,49. Minerals content, lithology, coordination 
number, pressure and temperature from earlier research on 
reservoirs are also utilized as constraints53–55. For reser-
voirs in the KG Basin, the Voigt–Reuss–Hill average yields 
the average modulus of mineral combination (quartz, feld-
spar and clay) or simply the Voigt–Reuss–Hill average of 
sand grains43,56.  
 The seismic characteristics are heavily influenced by 
pore fluids. Composition, pressure, and temperature affect 
their properties, particularly bulk modulus, density, viscosity 
and velocity. Batzle and Wang57 developed a set of rela-
tions to explain the effects of pressure, temperature and 
composition on the properties of hydrocarbon gases and 
oils, as well as brines, using a combination of thermody-
namic relations and empirical trends. Tables 2–4 list the 
reservoir parameters and computed fluid properties for 
well A2A for a specified pressure and temperature. The 
bulk modulus and density for various fluids are shown in 
Tables 2–4 for the Gassmann fluid substitution modelling. 
Initially, two RPTs are generated with 100% water satura-
tion and 100% gas saturation, and plotted in Figures 10 
and 11 respectively. In these figures, four cross-plots are 
generated with water-saturated and gas-saturated scatter 
points along with density versus P-wave velocity, P-wave 
velocity versus porosity, P-wave velocity versus S-wave 
velocity and VP/VS versus P-impedance. When well-log 
data are superimposed on the template, the data points can 
be clustered into different groups and classified as facies4. 
RPT allows overlaying the petrophysical interpretive lines 
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Table 2. Elastic modulus and density of minerals assumed for rock physics template (RPT)  
  (after Avseth8; Mavko et al.4) 

Minerals  Bulk modulus (GPa) Shear modulus (GPa) Density (g cm3) 
 

Quartz  36.6 45.0 2.65 
Feldspar  75.6 25.6 2.60 
Clay  20.9  6.9 2.58 

 
 

Table 3. Reservoir parameters  
  used for RPT analysis 

Parameters  Value 
 

Pressure  3370.0 psi  
Gas gravity  0.6 API  
Temperature  117.05°C  
Oil gravity  51.3 API  
Gas–oil ratio  100 l/l  
Salinity  38,610 ppm  

 
 

Table 4. Fluid properties used for Gassmann–Biot modelling 

Fluid type  Bulk modulus (GPa) Density (g cm3) 
 

Gas  0.0478 0.1291 
Oil  0.4558 0.6581 
Brine water  0.9853 0.9853 

 
 
over specific types of cross-plots. Lines that overlay on 
the scatter plots are the modelled RPT of 100% gas satura-
tion and 100% water-saturation that distinguish the litho-
logy as brine sand (green points) and gas sand (red points; 
Figures 10 and 11). It can be observed that RPT exactly 
matches the corresponding saturated scatter points in both 
figures.  
 VP and VS are derived using the calculated modulus and 
density at new saturation, and VP/VS against the AI tem-
plate is constructed. The derived rock physics model for 
sand and shale is placed over log data from wells A2A and 
A5 shown in Figure 12 a and b respectively. In Figure 12, 
the shale and sand lines are represented by two trend lines 
for which the shale gradient line modelled is between 5% 
and 75% with an interval of 20%, whereas, for sand lines, 
the range of the gradient line modelled is between 5% and 
35%. The porosity of shale, as observed in Figure 12 
ranges between 25% and 30%, while sand porosity ranges 
from 0% and 35% in well A2A and a small variation is 
observed in well A5. Each porosity sand line has its satura-
tion line, which begins with brine-saturated sand and ends 
with gas-saturated sand. On an RPT in the VP/VS versus AI 
cross-plot domain, Figure 12 includes a baseline shale-
trend line, a brine–sand trend line and curves for increasing 
gas saturation as a function of porosity. For well A2A, this 
template identifies cap-rock reservoirs such as shale, brine 
sand, cement and gas sand, whereas for well A5 it identifies 
shale, gas sand and cement. Hence, it proves reliable for 
the data used as input and assumptions made for the pro-

posed model. Tables 2–4 show input parameters used for 
RPT modelling.  

Uncertainty analysis using Monte Carlo simulation  

The MCS approach is commonly used in uncertainty quanti-
fication as the simulator engine that identifies uncertainties 
by examining the probability distribution of model parame-
ters and random number generation. By successively gene-
rating and sampling input parameters, the uncertainty of 
model outputs is identified and calculated using statistical 
indices. The key benefits of MCS uncertainty analysis in-
clude its rapid calculation speed, usability, no requirement 
of partial differential equations, insensitivity to the proba-
bility distribution of the response parameter, and ability to 
provide outputs with a specified probability level. To ana-
lyse the uncertainty using the MCS method, a significant 
number of model outputs are needed. According to the 
probability distribution functions, the input samples are 
generated, which are then supplied to the simulated model 
and used to determine the required outputs. 
 The MCS method entails simulating samples repeatedly 
within the probability density functions of the input data. 
The range of potential values for a given variable and the 
likelihood that distinct values represent the actual value 
are explained by probability density functions (PDFs)18,22. 
MCS is a sophisticated statistical tool used for decades in 
the petroleum sector58. It is carried out utilizing the techni-
que that generates stochastic (i.e. random) values from the 
PDF of the data. These recurrent simulations aim to gene-
rate distributions that indicate the probability of various 
estimates. These simulations are then applied to the model, 
which could be sophisticated or just a basic equation deve-
loped to arrive at the final estimate. The confidence interval 
for the final distributions can be used to compute the un-
certainty20,21.  
 The MCS approach can be executed in five key steps. 
Figure 13 presents a flowchart for the same. The method en-
tails mathematically simulating an experiment to calculate 
the probability distribution of a variable derived from a 
mathematical or empirical relationship involving one or 
more input parameters, each with its respective levels of 
uncertainty. Every input parameter is treated as if it were a 
random variable. Based on known data, the probability distri-
bution for a certain parameter is calculated. Different statisti-
cal distributions (uniform, triangular, normal or log–normal 
distribution) may exist for different input parameters, or one 
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Figure 10. Unconsolidated gas sandstone rock physics template (RPT) modelling with 100% water saturation. (a–d) Cross-plot be-
tween (a) P-wave velocity and density. (b) Porosity and P-wave velocity, (c) P-wave velocity and S-wave velocity and (d) P-
impedance and VP/VS ratio. The predicted values are shown in red and measured values in green.  

 

 
 

Figure 11. Unconsolidated gas sandstone RPT modelling with 100% gas saturation. (a–d) Cross-plot between (a) P-wave 
velocity and density, (b) porosity and P-wave velocity, (c) P-wave velocity and S-wave velocity and (d) P-impedance and 
VP/VS ratio. The predicted values are shown in red and measured values in green.  
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Figure 12. RPT posted in the cross-plot of VP/VS with P-impedance calculated from (a) well log A2A and (b) well A5. Gas sand, brine sand, cement 
and shale rock are identified. AI templates, colour-coded by gamma rays. Two trend lines present shale and sand line. Trend line porosity ranges from 
0% to 75% and modelled sand porosity from 5% to 35%.  
 
 
 

 
 

Figure 13. Flowchart of Monte Carlo simulation. 
 
 
or more may have the same distribution. The probability 
distribution of each parameter is simulated by generating a 
large number of random numbers. The method uses a mathe-
matical or empirical relationship to compute the probabi-
lity distribution of the output variable. This process is 
based on simulation with random input data sampling to 
obtain the desired analysis. The MCS technique is based 
on the assumption that if random sampling is performed 
for a random variable a sufficient number of times, the appro-
ximate statistical properties of the variable can be derived. 
Even though the input parameters have the same distribution, 
a different set of random numbers is generated for each 
input parameter having the same distribution22. When the 
quantity of random numbers generated becomes large, the 
approximate distribution approaches the true distribution.  
 MCS was performed using RPM. The objective was to 
validate the reproducibility of the variability observed in 
the log data by RPM. In this context, simulation was first 
performed for shale lithology. Multiple cross-plots among 
porosity, shale volume VP/VS, P-impedance, density, P-wave 
velocity and S-wave velocity were generated with a colour 

bar as density logs. In Figures 14 and 15, the red points show 
high-density values, whereas the blue points show low-
density values. The data are filtered and displayed for the 
shale zone only. The left and bottom of each figure display a 
marginal histogram, which is used to calibrate the distri-
butions. The histogram in green corresponds to the log data, 
while the black lines correspond to the simulated data. 
Figures 14 and 15 show the results of the simulation. These 
figures only display the PDF contours of P10, P50 and P90. 
Using this simulation, the output is obtained as a list of 
petro-elastic attributes, which are further used as the training 
set. In this study, we have chosen the attributes of VP/VS 
and P-impedance along with shale facies. A similar process 
has been performed for gas sand and shale simulation. For 
simplicity, in Figure 15, only the shale simulation is pre-
sented.  
 This way, three simulations have been performed for 
three facies (shale, brine sand and gas sand). The simulated 
data points can be used as training datasets for Bayesian 
classification. The classification is obtained by defining 
the system to be simulated (e.g. shale, sand) and determining 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 125, NO. 11, 10 DECEMBER 2023 1212 

 
 
Figure 14. Monte Carlo simulation results for brine sand. Six cross-plots, namely (a) shale volume versus porosity, (b) P-impedance versus VP/VS 
ratio, (c) P-wave velocity versus density, (d) P-wave velocity versus S-wave velocity, (e) porosity versus P-wave velocity and ( f ) porosity versus 
density are shown. PDF contours (P10, P50 and P90) are also generated and displayed in each cross-plot. Note that the histograms in green corre-
spond to the log data, while the black lines correspond to the simulated data.  
 
 

 
 

Figure 15. Monte Carlo simulation results for shale, namely (a) shale volume versus porosity, (b) P-impedance versus 
VP/VS ratio, (c) P-wave velocity versus density, (d) P-wave velocity versus S-wave velocity, (e) porosity versus P-wave ve-
locity and ( f ) porosity versus density are shown. PDF contours (P10, P50 and P90) are also generated and displayed in 
each cross-plot.  
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Figure 16. Results of simulating three facies are displayed. A cross-plot between VP/VS and P-impedance 
along with three simulated lithologies, i.e. shale (blue), brine sand (green) and gas sand (red) is shown.  

 
 
the variation in the behaviour of the inputs to the system. 
Further, it gives petro-elastic attributes as the training set, 
which also assigns a class number based on Bayesian clas-
sification for each lithology, e.g. shale and sand. In this 
study, RPM has been used as an input for MCS, and after 
simulation, it has been observed that RPM reproduces the 
same variability as observed in well-log data. Figure 16 
shows the results of the Bayesian classification. This figure 
classifies different facies distinctly; thus, the objective of 
performing MCS is achieved. 

Conclusion 

In this study, several new approaches have been discussed 
that link RPT to seismic data. The study broadly examines 
the theory and successful application of RPM and MCS. 
These analyses are performed to explore subsurface lithology 
and fluid content along with uncertainty analysis of the 
study area of the KG Basin. For well A2A, several RPD 
models are used: contact cement model, constant cement 
model and friable sand model. The contact cement line 
represents the case where quartz–cement rims grow on sand 
grains to produce rocks. With a minor decrease in porosity 
in the well, the P-wave velocity increases. The friable sand 
line results from loose pore-filling elements such as tiny 
grains, mica and detrital clay particles reducing porosity. 
According to the model, cementation of the reservoir sand 
ranges from 1% to more than 4%. The generated RPT is 
also plotted on the VP/VS versus AI cross-plot. The gas sand 
reservoir, cap shale and brine sand are all identified in this 
template. Using this deterministic approach, the hydrocarbon-

bearing zones have been identified based on the cross-plot 
interpretation and marked as zones 1 and 2. This study uses 
statistical clustering and classification approaches on the 
cross-plot data for a probabilistic interpretation of the size 
of the hydrocarbon anomaly. In the KG Basin, rock phys-
ics models and RPT restrictions imposed by local geology 
can be utilized to predict lithology and hydrocarbons. RPT 
generated from the shallow marine environment correctly 
indicates gas saturation with lithology as observed from 
conventional cross-plots. Initially, this study analyses a 
single well (A2A), whereas to validate the results, another 
well from the KG Basin, viz. A5 is used, and the results 
are more promising. RPT analysis of well logs is necessary 
to validate the templates for the reservoir before applying 
them to seismic data. In the last part of the study, MCS is 
adopted to estimate uncertainty. We have demonstrated 
how to use the RPMs developed in this study to perform 
uncertainty analysis using MCS. The objective of MCS is 
to examine how the RPMs reproduce the variability obser-
ved in the log data. In this study, we have simulated three 
different lithologies, viz. shale, brine sand and gas sand. 
Thereafter, these three lithologies have been classified in 
VP/VS versus the P-impedance cross-plot. Thus, we can pre-
dict the lithology and fluid content in the undrilled areas 
using the well log used here as a reference if we assume 
these areas have a similar geological deposition environ-
ment.  
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