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Alternaria blight is a destructive disease of mustard 
crops that causes significant economic loss and usually 
warrants extensive pesticide application. Characteriza-
tion and estimation of pest severity for better manage-
ment is the need of the hour to increase the scope of 
advisories to the farmers. In this study, statistical ap-
proaches like multiple stepwise linear regression, prin-
cipal component regression and partial least square 
regression have been employed to detect the disease 
severity of Alternaria blight in mustard leaves using 
hyperspectral reflectance data. The predicted values of 
diseased leaves in all the regression models were signif-
icantly reduced vis-à-vis healthy mustard leaves. The 
results of this study indicate that it is possible to detect 
the disease severity of Alternaria blight in mustard 
crops using hyperspectral reflectance data. 
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MONITORING of crop dynamics, growth, health and develop-
ment plays an important role in pest management and 
safety of crop1. Pests can cause severe damage to mustard 
plants that often leads to a decrease in the quality and 
yield of crops. Application of fungicides in huge quanti-
ties can help effectively manage most plant diseases and 
reduce yield loss. However, pesticides increase farmers’ 
costs, while excessive use can cause environmental prob-
lems2. Early detection and assessment of disease severity 
and distribution could provide useful information to decide 
the timing and specific areas of fungicide application for 
precise pest management. 
 The current surveillance practice for the farmers is to 
inspect their fields visually by experienced growers who 
can identify subtle variations in plant colour or minor wilt 
(droop)/brown, circular lesions on plant leaves. Jackson3 
assessed the infected surface area percentage of plants by 
scout and plant canopy measurement in the field. However, 
this process is laborious, less precise and time-consuming, 

and in large-scale cultivation, it is impossible to determine 
the infected areas and severity precisely4. Several attempts 
have been made to identify and diagnose Alternaria 
blight-affected mustard fields, prediction of coverage and 
development area under disease and yield loss5,6 using 
manual observations and local weather data. Weather-
based early warning systems of disease and pest infestation 
have been employed using point-scale statistical models7. 
However, due to variations in weather conditions on a spa-
tial and temporal scale, these models are applicable on par-
ticular areas for a limited time. Therefore, it is necessary to 
develop novel, inexpensive and effective methods that can 
advance and supplement traditional methods. 
 Among the emerging technologies, ‘remote sensing’ 
makes it possible to assess plant variation due to diseases8. 
Such assessment using remote sensing technology was in-
troduced about 80 years ago. Airborne photography was 
used to survey infection by Phymatotrichum omnivorum 
(Shear) Duggar in Texas, USA, in the late 1920s (ref. 9). 
Since then, began a new era of disease assessment without 
physical contact with the crops. In the decades that follo-
wed, aerial photographs and satellite images were widely 
used for plant pests detection and characterization10,11. 
However, most studies used radiometers and airborne 
cameras to record the reflected electromagnetic energy on 
analogue films covering broad spectral bands12,13. Hyper-
spectral technology is a new branch of remote sensing that 
uses hundreds of contiguous sensors operating in narrow 
spectral bands, which may potentially improve crop disease 
and severity assessment14,15. Many previous studies proved 
that the accuracy of plant biochemistry determination was 
affected by autocorrelation and multicollinearity of the 
hyperspectral reflectance data due to continuous hyper-
spectral ultra-narrow bands16. However, when studying plant 
disease, it is unavoidable. Various research studies reported 
that simple or multiple regressions do not reveal strong 
functional relationships between hyperspectral reflectance 
data and crop health conditions17. Therefore, highly sophisti-
cated statistical methods such as artificial neural networks 
(ANNs), fuzzy systems, principal component regression 
(PCR) and partial least-squares regression (PLSR) analysis 
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have been employed18,19. Nevertheless, the performance 
evaluation among regressions (i.e. multiple stepwise linear 
regression (MSLR), PCR and PLSR) was rarely used to 
assess Alternaria blight disease severity of mustard plants. 
 The present study was conducted on mustard (Brassica 
juncea L. Czern and Coss) crops because it is one of the 
major oilseed crops of India occupying large agricultural 
area. The crop is cultivated in around 6.8 million hectares 
with a production of 9.1 million tonnes and an average 
yield of 1331 kg/ha (ref. 20). Oil prices are increasing 
worldwide and are expected to further increase in the future, 
especially during the pandemic and post-pandemic years. 
India ranks first in the world in area and production of mus-
tard, but the average yield per hectare is less than other mus-
tard-growing countries. The yield is low mainly due to its 
cultivation under substantial areas of rice under rainfed 
conditions and the regular spread of Alternaria blight. 
Among the major diseases of mustard, Alternaria blight 
caused by Alternaria brassicae is one of the most wide-
spread and devastating diseases, causing major yield losses 
ranging from 15% to 71% in productivity and 14.6% to 
36% in oil content21,22. Apart from loss in yield and oil 
content, it also adversely affects seed quality, causing a 
reduction in seed size and discolouration23. Symptoms 
first appear as black dots on the lower leaves, which later 
enlarge into prominent, round concentric spots of various 
extents. As the disease progresses, small spots appear on 
the middle and upper leaves when the lower leaves fall. Al-
ternaria blight infection on the leaves and silique signifi-
cantly decreases the photosynthetic area. The stage of 
infection on the silique adversely affects normal seed devel-
opment, weight, colour, per cent oil content and quality. The 
existence of disease alters the surface of a plant or canopy, 
cell structure, chemical concentration, chlorophyll, nutrient 
and water absorption, and gas exchange, causing differences 
in colour and temperature that can modify reflectance char-
acteristics of the canopy24. Using remote sensing mecha-
nisms, it is possible to detect changes in crop health during 
the growing season25–27. The hyperspectral system has made 
it possible to record several hundred spectral bands in a 
single acquisition, thus generating more detailed spectral 
data28,29. To the best of our knowledge, there are no previous 
studies regarding the detection and severity of Alternaria 
blight disease in mustard using hyperspectral reflectance 
data. Thus, the main objective of the present study was to 
examine the possibilities of detecting Alternaria blight 
disease in mustard at the leaf level using ground-based 
hyperspectral reflectance data. Another objective was to 
examine the performance of PCR, PLSR and multiple step-
wise linear regression (MLSR) for the assessment and 
monitoring of plant disease and severity using the multi-
year, ground-based hyperspectral data. Finally, we wanted 
to develop a reliable and stable statistical method for as-
sessing Alternaria blight disease and its severity in mus-
tard by reducing the autocorrelation and multicollinearity 
of hyperspectral reflectance data. 

Materials and methods 

Study area and experimental set-up 

This study was conducted at six different sites in Bha-
ratpur district, Rajasthan, India. This district is the leading 
mustard-growing region, sharing share about 48% of the 
total production of the state. Also, Rajasthan accounts for 
45% of the total mustard seed production in India30. The 
mustard crop is cultivated after the southwest monsoon 
(rabi) season (October to April). October and November 
account for about 3% and 0.4% of the annual rainfall re-
spectively, while December, January and February are con-
sidered the cooler months, with minimum and maximum 
mean daily temperatures ranging from 7.3°C to 10.3°C and 
22.2°C to 25.2°C respectively. The maximum and mini-
mum temperatures are 39°C (in April) and 7.4°C (in Janu-
ary) during the crop-growing period (October to April). 
Bharatpur district, Rajasthan was divided into four quad-
rants and two sites in each quadrant assigned for ground 
measurements during the crop-growing seasons 2016–17 and 
2017–18 to cover all the heterogeneity among the mustard 
crop. Alternaria blight outbreak was not observed in two 
out of the eight selected locations. Therefore, these two 
locations were omitted from the study. Table 1 provides 
details of the remaining locations selected. 

Ground data measurements 

Measurement of spectral reflectance and crop parameters: A 
field survey of Alternaria blight disease-affected mustard 
crops was carried out at six locations in Bharatpur district, 
Rajasthan, from November to February in 2016, 2017 and 
2018. When Alternaria blight was found in the plants, an 
experienced plant pathologist graded the severity of the 
disease. Simultaneously, hyperspectral reflectance (data) of 
the infected plants and relative chlorophyll content (SPAD 
value arbitrary units) were recorded using a spectroradio-
meter (ASD FieldSpec 4.0, USA) and a chlorophyll meter 
(Konica Minolta SPAD502, Japan). The device (ASD 
FieldSpec 4.0) operated in the 350–2500 nm spectral region 
with a spectral resolution of 1 nm and a field of view 
(FOV) of 25° (Figure 1). The spectral reflectance data of 
different severity grades of diseased crops were collected  
 

Table 1. Geographical and phenological information of crops  
 during field-data collection 

Site  
no. 

 
Location 

 
   Age of crop/phenological stage 

 

1 27.20″N, 77.46″E 90 days/ripening 
2 27.18″N, 77.40″E 92 days/ripening 
3 27.25″N, 77.46″E 87 days/ripening 
4 27.44″N, 77.81″E 40 days/inflorescence emergence 
5 27.16″N, 77.43″E 69 days/flowering and ripening 
6 27.25″N, 77.46″E 95 days/ripening 
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Figure 1. Methodology of hyperspectral data collection and processing. 
 
 
in mustard fields under cloudless conditions between 11:00 
and 14:30 Indian Standard Time (IST) at 0.3 m above the  
leaf level using the spectroradiometer. Further, the collected 
spectral data were preprocessed using ViewSpecPro 6.2 
software and the processed data were saved to generate re-
flectance at each nanometre interval. SPAD-502 chloro-
phyll meter recorded the relative chlorophyll content by 
measuring the light intensity transmitted through the leaves 
at two wavelengths 650 and 940 nm. 
 For each sample site, 20–20 scans (observations) of five 
different grades (0–4) of the diseased crops were done, 
and totally four replicates were taken for each scan. The 
mean value of the replicates was used as the final reflec-
tance of the sample. Thus, 100 spectral samples were taken 
from one field, and a total of 600 samples were obtained 
as the final reflectance data of different grades of diseased 
crops. 
 
Acquisition of Alternaria blight disease severity grades: 
Alternaria blight disease severity grade (ADSG) was deter-
mined by a dedicated phytopathologist during the field sur-
vey at 45, 60, 75 and 90 DAS (days after sowing); ADSGs 
were determined in accordance with the percentage of the 
infected leaf area by Alternaria blight. Bhat et al.31, pre-
pared a severity grade scale (0–5) of Alternaria blight dis-
eased crops based on the infected area. In the present study, a 
modified scale of 0–4 instead of 0–5 was used based on 
visually assessed percentage area of the diseased leaf as 
follows: 0, No disease; 1, 0.1–25% diseased leaf area; 2, 
25.01–50% diseased leaf area; 3, 50.01–75% diseased leaf 
area and 4, >75.0% diseased leaf area. 

Data processing and statistical methods 

Preprocessing of hyperspectral reflectance data: The 
smoothing process was used to reduce noise (including 
measurement error). Moving averages, median filters and 
Savitzky–Golay transformation methods are commonly 
used for smoothening the data. In this study, spectral reflec-
tance data were smoothed with a five-point moving aver-
age to reduce environmental and instrumental noise before 

further analysis4. The total dataset consisted of 600 leaves 
(120–120 samples of each grade), which were separated 
into two subgroups. Also, 80% of the dataset was used as 
the training dataset for calibration (n = 480) and the re-
maining 20% as a testing dataset for validation (n = 120). 
In this study, the statistical methods used the Unscramble 
10.4 software. The hyperspectral reflectance or spectroscopic 
data represent the domain of 400–1300, 1501–1780 and 
2051–2350 nm, while the missing segments of 350–399, 
1301–1500, 1780–2050 and 2351–2500 nm correspond to 
strong noise or water vapour absorption in the atmosphere 
and thus are not of interest for remote sensing of the Earth’s 
surface32. 
 
Multiple stepwise linear regression: In agricultural science, 
the pillar for statistical analysis has been MSLR, although 
rationing of derivatives at different standard wavelengths 
has also been used extensively33,34. Stepwise regression is 
the step-by-step continuous building of a regression model, 
which involves the identification of independent variables 
to be used in the development of a final predictive model35. It 
was used as a process to automatically select variables in a 
stepwise manner based on partial correlation of the depend-
ent variables with the independent variables in the sense 
of maximizing the squared multiple correlation coefficients 
(R2) of the dependent variables34. It involves adding or 
eliminating potential descriptive variables in training and 
validating for statistical significance after each repetition. 
Previously, MSLR has been successfully used to study in 
situ plant spectra and involves extrapolating the outcomes 
of a simple linear regression analysis from one dimension 
to several dimensions36. In the current scenario, the depend-
ent variable was ADSG, and the independent variables are 
spectral reflectance data. ‘Matlab 2019’ software was used 
to train and validate the model. In this study, MSLR was 
good enough as long as the spectral reflectance data were 
sufficiently large (n = 600). 
 
Principal component regression: In the modern age of tech-
nology, PCR is the most popular and effective data reduc-
tion statistical method that transforms the original dataset 
into a subsequently reduced and easier-to-interpret set of 
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Figure 2. Effect of Alternaria blight disease on in situ leaf spectral reflectance of mustard crops, 
and variation in spectral reflectance over 400–2500 nm and the red-edge region (690–750 nm) of 
different grades of Alternaria blight diseased mustard crops. The diseased gravity grades are as fol-
lows: 0, No disease; 1, 0.1%–25%; 2, 25.01%–50%; 3, 50.01%–75%; 4, >75.0% infected leaf area. 

 
 
uncorrelated variables37. Previous studies have shown that 
this statistical method can preserve total variance while 
reducing mean squared estimation error and is also used to 
identify key patterns of a dataset that explain most of the 
information in the original dataset. The original data were 
used to determine the uncorrelated and linearly transformed 
components, such that the first principal component (PC) 
accounted for the maximum proportion of total variance. 
The other PCs were also computed to account for the maxi-
mum proportion of variance remaining in the procedure. 
The original hyperspectral data were standardized by cen-
tring and scaling. The study also applied an orthogonal 
transformation to the correlation matrix with a visually in-
terpretable component pattern. However, PCR selects factors 
that explain the difference and predict crop healthy condi-
tions using the regression method; this improves the high 
inter-band correlation of hyperspectral reflectance data. 
This technique is commonly used for dimensionality reduc-
tion of hyperspectral data in which some channels show a 
high degree of dependence38,39. 
 
Partial least square regression: PLSR is a modern and 
popular statistical approach that can effectively reduce the 
hyperspectral reflectance data into a few latent variables 
or factors containing significant information and thus maxi-
mize the covariance between the hyperspectral reflectance 
data and ADSGs. The main focus of the PLSR method is 
minimizing the model prediction error, a linear function of 
the prediction which explains the maximum variation of 
each response. Furthermore, PLSR has the added advantage 
of accounting for variation in the predictor, under the assu-
mption that directions in the predictor space that are well 
sampled should provide a better prediction for new obser-
vations when the predictors are highly correlated. PLSR is 
a highly regarded method for prediction with high accuracy 

when the sample size is small. It has been commonly used 
to assess the disease severity of crops40–42. The PCR algo-
rithm is used to reduce rank regression and PLSR. PLSR 
extracts successive linear combinations of the predictors 
(latent vectors or factors) to explain its variation. The 
PLSR method is used in this study for modelling linear re-
gression between multi-dependent and independent varia-
bles. PLSR removes the ill-effects in modelling due to 
multicollinearity by strong autocorrelation of inter-spectral 
bands. It also takes care of overfitting when the number of 
variables exceeds from the number of observations. 
 PLSR is useful in agricultural science42. However, using 
PLSR to detect plant disease and measure its severity is 
rare. One of the aims of this study was to assess the potential 
of the PLSR method to detect plant disease and measure 
its severity. 

Results 

Variability of in situ hyperspectral reflectance 

The spectral characteristics of leaf reflectance differed 
significantly from different ADSGs of mustard crops but 
showed a similar pattern in both the training/calibration 
and testing/validation datasets (Figure 2). The in situ leaf 
reflectance was significantly different in diseased and 
healthy plants in the visible spectral region (400–700 nm), 
whereas it tended to increase severity grade in the near-
infrared spectral region (701–950 nm). In addition, reflec-
tance in the near-infrared region resulted in more variability 
than in the visible region. A band shift was also observed 
in the red-edge region (690–750 nm) between the reflectance 
of healthy and diseased mustard crops (Figure 2). The re-
sults revealed that the chlorophyll index (SPAD) values 
decreased at higher ADSGs in all locations (Figure 3). 
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Figure 3. Effect of Alternaria blight disease on in situ leaf chlorophyll index (SPAD) values of mustard crop. ADSGs are as in Figure 2. 
 
 

 
 

Figure 4. True (observed) versus predicted response (ADSGs) of mustard crops using MSLR (step = 7). (a) and  
(b) are obtained from the training and testing datasets respectively. ADSGs are as follows: 1, No disease; 2, 0.1%–
25%; 3, 25.01%–50%; 4, 50.01%–75%; 5, >75.0% infected leaf area. 

 
 

Table 2. Evaluation of multiple stepwise linear 
regression model for the prediction of Alternaria 
blight disease severity grades (ADSGs) of mustard  
 crops at the leaf level (P > 0.01) 

Training Testing 
 

RSME R2 RSME R2 
 

0.85 0.62 0.75 0.72 

 
 
MSLR analysis for ADSGs 

In the MSLR model for evaluating ADSGs using reflectance 
data, the training dataset was used as input to calibrate the 
model and the testing dataset to validate the model. Seven 
steps (seven optimal number of variables) were used in 
MSLR, which gave the best prediction for ADSGs of mus-
tard crops. All the remaining variables (spectral bands) in 
the model were significant at 0.01 level. The remaining 
spectral bands in the final model were selected from the 

visible, red-edge and near-infrared segments of the spec-
trum located at 553, 642, 687, 703, 735, 752 and 887 nm. 
 The coefficient of determination (R2) between the obser-
ved and predicted ADSGs for the calibration and valida-
tion datasets was 0.62 and 0.72 respectively (Table 2). 
The root mean square error (RMSE) of the calibration and 
validation datasets was 0.85 and 0.75 respectively. Figure 
4 a and b shows scatter plots between the observed and 
predicted ADSGs of the calibration and validation datasets 
respectively. 
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Table 3. Individual (I) and cumulative (C) percentage of variation accounted by principal component (PC) and  
  factor (training/testing dataset) 

 Principal component regression (PCR) Partial least square (PLS) 
 

 Model effect (%) Prediction (%) Model effect (%) Prediction (%) 
Number of PCS  
or factors 

 
I 

 
C 

 
I 

 
C 

 
I 

 
C 

 
I 

 
C 

 

1 95.69 95.69 95.67 95.67 95.63 95.63 96.92 96.92 
2 3.88 99.57 3.89 99.57 3.93 99.56 2.68 99.60 
3 0.24 99.81 0.24 99.80 0.23 99.79 0.11 99.72 
4 0.11 99.92 0.11 99.92 0.11 99.89 0.12 99.84 
5 0.06 99.98 0.06 99.98 0.08 99.98 0.10 99.94 
6 0.01 99.99 0.01 99.99 0.00 99.98 0.00 99.95 
7 0.01 99.99 0.01 99.99 0.01 99.99 0.00 99.95 

 
 

 
 

Figure 5. First two PC/factor scores of different severity grades of Alternaria blight disease in mustard crop. ADSGs are as in Figure 2. a, PC score 
of calculated PCR. b, Factor scores calculated by PLSR. 
 
 

 
 

Figure 6. Importance of variables of PCs and factors described by loadings obtained from PCR and PLSR analysis (at significance level 0.01) for 
predicting ADSGs. The X-axis represents the variables (spectral bands) and the Y-axis represents the loadings/importance of variables of particular 
PCs/factors. a, Importance of variables for PC1, PC2 and PC3. b, Importance of variables for factor 1, factor 2 and factor 3. 
 
 
PCR analysis for ADSGs 

PCR was applied on the 400–900 nm spectral region of 
the training dataset generated from all samples to reduce 
the high dimension and examine qualitative discrimination 
in the hyperspectral reflectance data among different ADSGs 
crops. The first three PCs accounted for 95.7%, 3.8% and 
0.2% of the total variance respectively. It showed that the 
cumulative reliabilities of the first two PCs could explain 
99% of the total data (Table 3). Thus, they could be used 

to represent the 500 predictors for the mapping of different 
ADSGs. 
 PCR results are usually interpreted by visualization of 
the PC score. Figure 5 a shows the score plot of PC1 × 
PC2 of all the samples. We can observe that different seve-
rity grades of infected crops scatter separately in the two-
dimensional area, and the diseased crops are found far 
away from the healthy samples (grade 0). Although the 
sample points of infected grade-2 and grade-3 are clustered, 
their boundaries are not clear; some sample points are 
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Figure 7. Observed versus predicted ADSGs of mustard crop using (a, b) PCR and (c, d) PLSR obtained from the training and 
testing dataset respectively. ADSGs are as in Figure 2. 

 
 

Table 4. Goodness-of-fit of principal component regression (PCR) and 
partial least square regression (PLSR) for the prediction of ADSGs in  
  mustard crops at the leaf level (P > 0.01) 

 PCR PLSR 
 

Evaluating factors Training Validation Training Validation 
 

RMSE 0.47 0.69 0.32 0.52 
R2 0.88 0.80 0.95 0.87 

 
 
seen to overlap the boundaries. It is difficult to separate all 
types of severity grades in the two-dimensional scatter 
plot of PC scores. Therefore, the first two PCs can be re-
garded as the primary variables and remaining omitted for 
further analysis. The importance/weights of the variables 
(spectral bands) of the different PCs were then mapped 
(Figure 6 a). 
 In this study, the first two PCs (independent variables) 
were used to develop the regression model for assessing 
ADSGs of mustard crops. Figure 7 a and b shows the scatter 
plots of predicted versus observed ADSGs for the calibra-
tion and validation datasets respectively. The coefficient 
of determination (R2) between the observed and predicted 
ADSGs for calibration and validation datasets was 0.88 
and 0.80 respectively (Table 4). A low RMSE of 0.47 and 
0.69 was observed for the calibration and validation datasets. 

PLSR for ADSGs 

PLSR was also applied on the 400–900 nm spectral region 
of the training dataset for characterizing the spectra among 
the ADSGs crops. A seven-factor PLSR model based on 

the calibration dataset was developed for predicting ADSGs 
of the validation dataset. The explained variance account-
ing for the first three factors was 95.6%, 3.9% and 0.2% 
respectively of the total variance for the calibration dataset 
(Table 3). It showed that the cumulative reliabilities of the 
first three factors could explain 99.56% of the total variance. 
Figure 5 b shows the score plot of factor 1 × factor 2 of all 
the samples. Figure 6 b shows the importance/weights of 
the variables (spectral bands) of the different factors. Differ-
ent ADSGs can be easily separated in the two-dimensional 
area. The correlation coefficient between predicted and 
observed values for the training and testing datasets was 
0.95 and 0.87 respectively. RMSE of the predicted and 
observed values for the training and testing datasets was 
0.32 and 0.52 respectively (Figure 7 c and d and Table 4). 
Therefore, PLSR can be regarded as the best method for 
characterizing different ADSGs of mustard crops. 

Discussion 

The MSLR, PCR and PLSR methods were examined for 
their performance in estimating ADSGs in mustard crops 
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using remotely sensed hyperspectral reflectance/spectro-
scopic data. Although MSLR has not had a strong theoretical 
basis43,44, it showed a large variation in the ADSGs of 
mustard crops. The reflectance data of seven spectral 
bands (553, 642, 687, 703, 735, 752 and 887 nm) were se-
lected to develop the prediction model for the estimation 
of ADSGs of mustard crop. The selected spectral bands 
were neither related to the known water absorption spectral 
bands at 970, 1200, 1400, 1450 and 194 nm, nor with the 
leaf pigment absorption spectral bands at 430, 460, 640, 
nor 660 nm (refs 45–50). It was found that the spectral 
bands at 703, 735 and 752 nm were sensitive to variation 
in plant biochemistry48,51,52. MSLR is beneficial in defining 
the relationships between spectral reflectance and plant 
characteristics. The predictive ability of MSLR is compro-
mised because several predictors (spectral bands) are highly 
correlated with each other (multicollinearity). Many re-
searchers have reported similar results that MSLR does 
not have a strong theoretical basis, and that it cannot over-
come the overfitting and colinearity of independent varia-
bles due to high autocorrelation43,53. 
 The results of this study showed that PCR was better than 
MLSR. Earlier many workers54 showed the effective usage 
of PCR to determine the spectral properties of healthy and 
diseased plants. However, a low coefficient of determina-
tion R2 and high prediction error were found for both the 
training and testing datasets, and the outcomes recom-
mended that the ADSGs of mustard crops were positively 
influenced by other factors not explained by the first three 
components (Figure 6 a and b). Monterio et al.55, also ob-
tained a low prediction accuracy. Several authors have 
pointed out that obtaining a high degree of accuracy from 
the PCR method is difficult because it accepts independ-
ent spectral bands (variables) without considering the de-
pendent spectral bands. 
 In the present study, a high coefficient of determination 
and low prediction errors were found with PLSR for the 
training and testing datasets. Many workers12,56 had cor-
roborated our results; they used PLSR to predict grain 
yield and protein content using hyperspectral reflectance or 
spectroscopic data. Similar results57 were reported that high 
covariance and redundancy in hyperspectral reflectance 
data influence the prediction accuracy and that the PLSR 
model is ideal for tackling this problem. Therefore it is re-
ported as one of the finest statistical methods to assess the 
disease severity using high dimensional hyperspectral data 
over agricultural crops. 

Conclusion 

The discrimination results in this study suggest that hyper-
spectral reflectance or spectroscopic data have great potential 
to estimate the different severity grades of Alternaria 
blight disease in mustard crops. In addition, this technology 
can be used as an effective and inexpensive method to 
identify diseased plants at the field level. The chlorophyll 

index (SPAD) values were lower at higher ADSGs of mustard 
crops at all locations. A comparative study of three differ-
ent methods to estimate ADSGs showed that the PLSR 
method is the most suitable, reliable and effective statistical 
approach to estimating disease severity. This method will 
be further tested with the present hyperspectral sensor 
EMIT (Earth Surface Mineral Dust Source Investigation) 
payload of the International Space Station on mustard crops 
in the future. The identified sensitive bands need to be fur-
ther checked for different full-width half maxima (10, 20, 
30, 40 and 50 nm) to harness the usability of multispec-
tral, space-borne sensors in pest-infested crop plants. 
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