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Floods are one of the most devastating natural disasters 
that cause immense damage to life, property and agri-
culture worldwide. Recurring floods in Bihar (a state in 
eastern India) during the monsoon season impact the 
agro-based economy, destroying crops and making it 
difficult for farmers to prepare for the next season. To 
mitigate the impact of floods on the agricultural sector, 
there is a need for early warning systems. Nowadays, 
remote sensing technology is used extensively for moni-
toring and managing flood events, which is also used in 
the present study. The random forest (RF) machine 
learning (ML) algorithm has also been used for land-use 
classification, and its output is used as an input for flood 
impact assessment. Here, we have analysed the flood 
extents and their impact on agriculture using Sentinel-1 
SAR, Sentinel-2 and Planet Scope optical imageries on 
the Google Earth Engine (GEE) cloud computing plat-
form. The present study shows that floods severely im-
pacted a large part of Bihar during the monsoon seasons 
of 2020 and 2021. About 701,967 ha of land (614,706 ha 
agricultural land) in 2020 and 955,897 ha (851,663 ha 
agricultural land) in 2021 were severely flooded. An 
inundation maps and area statistics have been generated 
to visualise the results, which can help the government 
authorities prioritize relief and rescue operations. 
 
Keywords: Agriculture, cloud computing platforms, 
floods, machine learning algorithm, remote sensing data. 
 
FLOOD is a major natural disaster in the Indian state of Bihar, 
which severely impacts the property, infrastructure and 
agriculture every year. Rapid urban growth, deforestation, 
unplanned development and erratic rainfall are the main 
causes of frequent floods in North Bihar, mostly during the 
monsoon season. Due to overflowing rivers in the neigh-
bouring country of Nepal, North Bihar has experienced 

severe floods during the past three decades1,2. The COVID-
19 pandemic has worsened the situation, where natural 
disasters and other factors have disrupted the economic 
and social stability of communities. Floods significantly 
impact the agricultural sector, which is the major source 
of livelihood for many people in Bihar. When floods occur, 
crops are completely destroyed, making it difficult for the 
farmers to earn a living. Additionally, floods damage homes 
and other infrastructure, making it unsafe to live. As a result, 
many people in North Bihar are forced to migrate to other 
areas in search of work during floods to sustain their lives. 
It is a difficult and often traumatic experience, as families 
are separated, and individuals are forced to leave their homes 
and communities behind. 
 To mitigate the impact of floods, an early warning system 
is needed in Bihar. Hence, the use of remote sensing and 
geospatial technology, in addition to hydrological data for 
flood extent mapping and monitoring, is important for miti-
gating the impact of floods in Bihar. Remote sensing tech-
nology is capable to provide data on rainfall, water level 
and soil moisture, which can provide valuable information 
for farmers and local authorities to take preventive measures 
for floods. 
 Synthetic aperture radar (SAR) data is more effective 
than multi-spectral optical datasets for flood mapping and 
monitoring due to its all-weather sensing capability. The 
European Space Agency (ESA) launched the Sentinel-1A 
satellite on 3 April 2014 and Sentinel-1B on 25 April 2016 
for SAR data. Its revisit time is six days at the equator with 
two satellites (Sentinel-1A/B)3. Nowadays, the remotely 
sensed earth observation (EO) datasets are commonly used 
for disaster management4 and are freely available to resear-
chers. However, these datasets are computationally and 
storage-intensive data types. Users must have high-perfor-
mance computers and large amounts of storage space to 
download, store and process the data. To resolve these 
complications, Google has launched the most advanced 
cloud-based geo-computing platform, viz. ‘Google Earth 
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Figure 1. Location map of the study area. 
 
 
Engine (GEE)’. This platform enables us to process huge 
satellite datasets without requiring local storage5. 
 In the present study, Sentinel-2 MSI and PLANET-NICFI 
(PlanetScope) optical datasets have been utilized for land-
use/land-cover (LU/LC) mapping and Sentinel-1 SAR for 
flood extent mapping and monitoring. The ability of SAR 
sensors to detect the extent of flooding depends on different 
scattering mechanisms. Inundated pixels can be identified 
using several methods that rely on the scattering mechanism. 
These methods apply backscatter thresholds to the imagery to 
differentiate between inundated and non-inundated areas6. 
Usually, the change detection technique is utilized to iden-
tify flooded pixels using SAR datasets. 
 Likewise, various methods and indices exist to extract 
waterbodies using optical and microwave satellite datasets. 
The Normalized Difference Water Index (NDWI) was 
proposed by McFeeters7 in 1996 and has been shown to be 
a robust index for detecting waterbodies, especially in areas 
with high vegetation cover. The Modified Normalized 
Difference Water Index (MNDWI) was proposed by Xu8 
in 2006 as a modification of NDWI, specifically designed 
for urban areas. It effectively extracts waterbodies in urban 
areas with high reflectance from built-up structures. The 
Automated Water Extraction Index (AWEI) was developed 
by Feyisa et al.9 in 2014. It is designed to overcome the 
limitations of NDWI and MNDWI in areas with mixed 
pixels, such as rivers or wetlands. AWEI is based on a 
combination of the green, blue, and red bands, as well as 
the shortwave infrared and thermal infrared bands, allowing 
for more accurate detection of waterbodies. These indices 

have been widely used and validated for detecting water bod-
ies and assessing the impact of floods. The threshold tech-
nique is also used to identify flood extent using JavaScript 
code. Therefore, it is always necessary to have accurate 
data on flooded areas for an accurate assessment of the dam-
age in order to make a viable decision on prioritizing relief. 
 Several studies have been undertaken over the years to 
deal with the consequences of frequent floods in Bihar, 
using optical and SAR satellite datasets10–14. However, 
limited studies have been conducted regarding the effects 
of floods on agriculture utilizing cutting-edge technology 
like machine learning (ML) algorithms, high-resolution 
satellite data (such as Sentinel-1 and 2 and PlanetScope) and 
cloud computing platforms like GEE. 
 The present study aims to address the existing research 
gap by incorporating these advanced approaches, which 
offer faster flood extent demarcation and map generation 
capabilities. Additionally, this study leverages the combined 
power (data fusion) of Sentinel-2 and PlanetScope satellite 
datasets for precise land-use classification using ML appro-
aches. 

Materials and methods 

Study area 

This study was carried out in North Bihar (24.33611–
27.52083 N lat. and 83.33055–88.29444 E long.; Figure 1). 
According to the Census of India 2011, Bihar has a popula-
tion of 10.41 crores15. The state receives 1205 mm of rainfall 
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Table 1. Datasets used in the study 

 
Data 

 
Duration 

Resolution 
(m) 

 
Source 

 
Aim 

 
Assessing path 

 

Sentinel-1A/B SAR  June to October  
 (2020 and 2021) 

10 European Space  
 Agency (ESA) 

To demarcate flooded regions and  
 flooded agricultural fields 

COPNERICUS/S1 

Sentinel-2A/B optical March (2020 and 2021)   Land-use mapping COPNERICUS/S2 
PLANET-NICFI  
 (PlanetScope) 

March (2020 and 2021) 4.77 ESA  Planet-nicfi/assets/ 
 basemaps 

Shuttle Radar Topography  
 Mission  

2000 30 NASA Terrain correction SRTMGL1_003 

 
 
 
 
 
 
 
 
 
 
 
 
 
each year on average and has the world’s most fertile alluvial 
plains of the Gangetic Valley. Its soil distribution is loam, 
clay, clay loam and sandy loam16. The main agricultural 
products of Bihar include maize, wheat and rice. The pre-
sent study considered 22 districts of Bihar. North Bihar is 
home to several rivers responsible for recurrent flooding 
in the region. The major rivers include the Kosi, Gandak, 
Budhi Gandak, Bagmati and Mahananda. In the past, these 
rivers caused devastating floods in the state, with North 
Bihar being the worst affected. The Kosi River, which runs 
through Bihar, is known as the ‘Sorrow of Bihar’ owing to 
its unpredictable and destructive floods. 

Data used 

In this study, major emphasis has been given on the capabi-
lities of multi-source remote sensing data (Table 1) in as-
sessing the impact of floods on agriculture in North Bihar. 
 
Sentinel-1 SAR: The openly accessible Sentinel-1 SAR data-
sets offered by ESA have been utilized in the present study. 
The interferometric wide swath (IW) mode has been used 
due to its conflict-free nature and the availability of both 
vertical transmit–vertical receive (VV) and vertical trans-
mit–horizontal receive (VH) polarization. The SNAP tool 
package has been used to process satellite data for noise 
removal, radiometric, orbital and terrain corrections by 
SRTM datasets. In this study, all the accessible Sentinel-1 
SAR datasets have been utilized for flood mapping and 
monitoring purposes. 
 
Sentinel-2A/B MSI: Freely accessible Sentinel-2A/B Multi-
spectral Instrument (MSI) satellite datasets can monitor 

the land surface. The revisit frequency of this satellite is ten 
days with a single satellite and five days with combined/ 
dual satellites. In this study, we utilized bands 2, 3, 4 and 
8 of the Sentinel-2 dataset for land-use mapping. 
 
NICFI (PlanetScope): In collaboration with Google and 
Norway’s International Climate and Forest Initiative (NICFI), 
the high-resolution composite base maps of PlanetScope 
for tropical regions have recently become accessible within 
GEE17. Its spatial resolution is 4.77 m, with four bands, viz. 
blue, green, red and NIR. This dataset is available from 
2015 to 2020 as base map composites of 3 and 6 months, 
and as a monthly composite since September 2020 (ref. 18). 
We have used datasets from March 2020 and 2021 for land-
use mapping. 

Methodology 

Harmonization of PlanetScope and Sentinel-2A/B MSI: Bi-
linear interpolation is a widely used method for resampling 
images19,20. In this study, the bilinear interpolation method 
has been used in the GEE platform to adjust the resolution 
of the Sentinel-2 dataset and match it to the 4.77 m resolu-
tion of PlanetScope (Box 1). We have utilized bands blue, 
green, red and NIR of PlanetScope and Sentinel-2A/B 
MSI for land-use mapping. 
 The land-use map has been prepared using harmonized 
Sentinel-2 MSI and PlanetScope datasets for extracting 
flooded agriculture lands of 2020 and 2021. Otsu automatic 
thresholding technique was used for the identification of 
inundated pixels21–24. An automated thresholding approach 
can detect threshold values to distinguish water pixels from 
other pixels without having any training sample datasets25,26. 
Presently, the threshold value is equal to or less than –3 dB 
used for flood. The pre-flood layer of water bodies was 
deducted from the obtained flood extent to get the final re-
sult. Figure 2 is a flowchart showing the methodology 
used in this study. 
 
Google Earth engine: SAR data processing is a complex task 
that requires separate computational systems and storage 
space along with specialized software. However, GEE pro-
vides a unique solution to these challenges through a cloud-
based platform that allows users to process the datasets. 

Box 1. Syntax/code. 
 
Resample the Sentinel-2 10 m band to PlanetScope 4.77 m us-
ing bilinear interpolation method 
 
var resampled  
=image.select(bands). 
resample('bilinear') 
.reproject(proj4.77m); 
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Figure 2. Methodology. 
 
 

 
 

Figure 3. Interface of cloud computing platform of Google Earth Engine. 
 
 
The GEE platform provides access to vast satellite imagery, 
including SAR data, which can be processed in real-time 
or near-real-time. We have used the GEE cloud computing 
platform for the entire analysis. A web-based IDE code 
was developed (https://code.earthengine.google.com/?script- 
Path=users%2F%2F%3AFlood_Extent2020_21_NB) for es-
timation of flood extents and impacted agricultural lands 
(Figure 3). 
 
Random forest classifier: The random forest classifier (RFC) 
is an ML algorithm commonly used for image classifica-
tion including land-use map preparation utilizing remote 

sensing data. In this context, Sentinel-2 and PlanetScope 
data are often used as inputs to the algorithm. Initially, 
110 trees were used in the RF model in this study (Syntax: 
ee.Classifier.smileRandomForest (110)). RFC works by 
generating multiple decision trees, each of which predicts 
the land use class of a pixel based on its spectral properties 
(Figure 4). The algorithm then combines the results of these 
decision trees to produce a final classification map. This 
classifier is commonly used due to its capability to handle 
complex spectral interactions and nonlinear relationships 
between the spectral bands and land-use classes, making it 
a powerful tool for image classification. 

https://code.earthengine.google.com/?scriptPath=users%2F%2F%3AFlood_Extent2020_21_NB
https://code.earthengine.google.com/?scriptPath=users%2F%2F%3AFlood_Extent2020_21_NB
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Figure 4. Random forest classifier flowchart. 
 
 

 
 

Figure 5. Backscatter intensity of pixels. 
 
 
 In the present study, Sentinel-2 and PlanetScope data have 
been used together for land-use mapping, which allows for 
a more comprehensive view of the Earth’s surface. The Sen-
tinel-2 data provide broad spectral coverage, allowing for 
identifying a wide range of land-cover types. The PlanetScope 
data provide high-resolution imagery, which allows for 
identifying smaller features on the Earth’s surface. The 
land-use map generated by RFC was utilized in the study 
for flood impact assessment. 

Results and discussion 

Backscatter intensity of flooded pixels 

The intensity of the backscatter pattern of the processed 
microwave (SAR) Sentinel-1 dataset is influenced by several 
factors, such as roughness, slope, moisture content and vege-
tation cover of the surface. For instance, a smooth surface 

like water reflects less radar energy and produces a dark 
backscatter pattern, while a rough surface like mountainous 
terrain reflects more radar energy and produces a bright 
backscatter pattern. Thus, the intensity of the backscatter 
pattern can provide information about the types of features 
present on the Earth’s surface, such as water bodies, forests, 
urban areas and agricultural land. 
 In the present study, pixels having low grey-scale intensity 
represent waterbodies and features, while high-intensity 
pixels represent human-made or non-water features5. We 
have used VV polarization in this study. The backscatter 
intensity has been measured in decibels (Figure 5). 

Flood impact analysis 

An analysis was conducted to assess the impact of floods 
in North Bihar. For this, satellite images from March 2020 
were used to identify pre-flood conditions, while images 
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Figure 6. District-wise flood statistics. 
 
 

 
 

Figure 7. Backscatter response of VV polarization in 2020 and 2021. 
 

 
from June to October in both 2020 and 2021 were used to 
identify peak flood events. By subtracting the pre-flood 
layer from the peak-flood layer, the actual flood extent 
was derived. To determine the affected areas and population 
(Table 2), the boundaries of villages, blocks and districts 
provided by the Survey of India (having population data in 
the attribute table) were overlaid on the actual flood extent 
map. 
 It is reported that about 22 districts in Bihar are on high 
alert during monsoon season every year27,28. This is because 
these districts are situated in the basins of Kosi, Ganga, 
Gandak and Mahanadi, which overflow every year due to 
heavy rainfall. The analysis indicates that almost 701,942 ha 
area (about 21 districts) in 2020 and 955,897.00 ha (about 
22 districts) in 2021 of North Bihar were flooded. The worst 
affected districts in 2020 were Darbhanga, Muzaffarpur, 
West Champaran, Saran and Siwan. In 2021, Bhagalpur, 
Darbhanga, Muzaffarpur, West Champaran, Katihar, Vaishali 
and Khagaria districts were severely affected by floods 
(Figure 6). In 2020 and 2021, floods submerged over 
614,706.26 and 851,663 hectares of agricultural land, res-
pectively. The majority of Bihar’s population relies on agri-
culture for its livelihood, which is the sector that suffers 
maximum damage from recurrent floods. 

Flood progression evaluation using Sentinel-1 SAR  
data 

In this study, VV polarization has been utilized for flood 
extent mapping, wherein the backscatter response of VV 
ranges between –8 and –16 dB (Figure 7). We found that 
high values of VV represent non-water features, while water 
bodies represent low backscatter responses. 

Pre-flood land-use map 

Land-use mapping involves using remote sensing data to 
identify and classify different types of land cover such as 
‘forests, croplands, urban areas and water bodies’. Envi-
ronmental managers, urban planners and policymakers of-
ten use this information to make quick decisions about 
how to use and manage the land. In the present study, 
Sentinel-2A/B (<10% clouded data) and PlanetScope im-
ages were used to extract land-use maps using RF method 
on GEE cloud computing platform. A pre-flood land-use 
map was used (Figure 8), and the flood extent was over-
laid to identify land use impacted by floods in 2020 and 
2021. 
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Figure 8. Land-use map of pre-flood area. 
 
 
Flood 2020 

The analysis showed that several districts in Bihar were 
severely affected by floods in 2020. More than 8000 ha of 
cropland in Darbhanga, East Champaran and Muzaffarpur 
districts was adversely affected (Figure 9 a). The impact 
of floods varied significantly among the districts, with 
Darbhanga having the highest total flood-affected agricultural 
land (84,302.58 ha) and the highest population affected 
(1,382,250), while Kishanganj had the lowest total flood-
affected agricultural land (2,903.59 ha) and the lowest 
population (30,596) affected29,30. 

Flood 2021 

The analysis showed that the 2021 flood events occurred 
in four phases. The first phase was in the last week of June 
2021, the second phase in the first week of July 2021, the 
third phase in the first week of August 2021 and the fourth 
phase in the last week of August 2021. It was also ob-
served that the extent of flooded areas varied significantly 
across the districts, from 2,970 ha in Sheohar to 86,790 ha 
in Bhagalpur. The number of people affected by the floods 
also varied significantly, from 44,155 in Sheohar to 
1,219,906 in Darbhanga (Figure 9 b). Some districts, such as 
Bhagalpur, Katihar, Darbhanga and Muzaffarpur, experi-
enced large flooded areas and high population displace-
ment. Other districts, such as Gopalganj, Sheohar, Siwan and 
Supaul, had smaller flooded areas but still had a consider-
able number of people affected by the floods. 

Accuracy assessment and validation of results 

The accuracy of the extracted flood extent areas was vali-
dated independently using datasets that included high-resolu-
tion satellite images from Google Earth and the flood extent 
layer of National Remote Sensing Centre (NRSC)31. Vali-
dation points were carefully selected to ensure representation 
across the entire image. Approximately 260 validation points 
were chosen within the study area. Subsequently, confusion 
matrices were generated to assess the classification perfor-
mance, a commonly employed method for multi-class classi-
fication evaluations32. The overall accuracy obtained 
exceeded 89%, thereby confirming the suitability of the 
Otsu automatic thresholding method for rapid and efficient 
flood mapping22. 
 In addition to the aforementioned validation datasets, the 
advisory document from the State Disaster Management 
Authority (SDMA) and data from the Flood Management 
Information System, Bihar and the crop area affected report 
of NRSC33 were employed to further validate the study. This 
comprehensive validation approach, which involved mul-
tiple independent sources, strengthens the credibility of the 
results of this study. 

Conclusion 

In this study, the impact of floods on agriculture in North 
Bihar has been assessed. Optical remote sensing data, Senti-
nel-2 and PlanetScope, hosted on GEE cloud platform, 
have been used to delineate pre- and post-flood land-use 
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Figure 9. Flood-affected land-use map of (a) 2020 and (b) 2021. 
 
 
maps for 2020 and 2021. Sentinel-1 SAR data were used 
to identify flood pixels employing the automated threshold-
ing technique on GEE. A JavaScript code was developed 
for processing the enormous datasets hosted on the GEE 
cloud computer platform within a short period. This code is 
capable of robust flood mapping and monitoring using 
microwave (SAR) satellite datasets on a large scale. It has 
been observed that about ~ 12.63%  (701,967 ha) of the study 

area was flooded in 2020, while in 2021, about ~17.20%  
(955,897 ha) of the study area was flooded. The districts 
most affected by floods in 2021 were Bhagalpur, Darbhanga, 
Katihar, Muzaffarpur and Gopalganj. In 2021, about 4% 
more area of North Bihar was flooded compared to the 
floods of 2020. The results of this study have been vali-
dated using the flood extent layer generated by NRSC and 
the advisory document of SDMA, Bihar. It is expected that 
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the generated flood extent maps and area of statistics will 
be beneficial for the policymakers in future planning. 
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