
RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 125, NO. 6, 25 SEPTEMBER 2023 665 

*For correspondence. (e-mail: shameemansar@gmail.com) 

Identifying suitable digital elevation models  
and deriving features for landslide assessment  
in Idukki District, Kerala, India 
 
A. Shameem Ansar1,*, S. Sudha1 and Suresh Francis2 
1Department of Electrical and Electronics Engineering, National Institute of Technology, Tiruchirappalli 620 015, India 
2Kerala State Remote Sensing and Environment Centre, Thiruvananthapuram 695 033, India 
 

This study compares the vertical accuracy of different 
digital elevation models (DEMs), such as Cartosat-I, 
ASTER-GDEM, SRTM-GL1, ALOS3D30 and FABDEM 
with a resolution of 30 m, to the toposheet-derived 264 
spot heights of Idukki district, Kerala, India, obtained 
from the Survey of India. We quantitatively assess the 
vertical accuracy of these DEMs by analysing their accu-
racy against randomly selected topographic map spot 
heights. The study also validates the accuracy of the 
DEMs by evaluating the vertical accuracy separately 
for different elevation classes representing varying ter-
rain characteristics of the Idukki district. Statistical 
measures are used to evaluate the performance of the 
DEMs. The results of the study show that FABDEM 
exhibits an RMSE of 41.79 m, which is lower than that 
of other models. The study utilizes FABDEM to derive 
a set of 12 geomorphological and hydrogeological fea-
tures, including slope, aspect, elevation, profile curvature, 
plan curvature, distance to road, relative relief, rugged-
ness index, drainage density, height above near drainage, 
wetness index and stream power index. The character-
istics of various parameters are analysed. The uniqueness 
of this study lies in its utilization of geomorphological 
and hydrogeological features derived from FABDEM 
that directly impact the susceptibility of landslides in 
the region. The study identifies that a combination of these 
dynamic and static parameters, which vary with eleva-
tion classes, plays a significant role in determining 
landslide occurrence in this region. 
 
Keywords: Digital elevation models, geomorphological 
and hydrogeological features, landslide, spot height, verti-
cal accuracy. 
 
DIGITAL Elevation Models (DEMs) are digital representa-
tions of the bare ground topographic surface of the earth, 
excluding trees, buildings and other surface objects. DEMs 
are created from a variety of sources, including topographic 
maps, and are commonly used in various applications such 
as Geographic Information Systems (GIS)1. DEM provides 
accurate information necessary for various applications 

such as GIS and often replaces topographical maps to  
derive the main causative factors such as slope, aspect, ele-
vation, distance to road, drainage density, curvature, etc. It 
can be also used for analysis of hydrological modelling, 
landforms, viewshed and in modelling mass movements like 
landslides. The accuracy of DEMs is crucial as errors in 
DEMs can propagate during data processing, affecting the 
quality of the output of the applications in which they are 
used2. Therefore, it is important to assess the accuracy of 
DEMs before applying them to geographical analysis. The 
importance of DEMs in geographical applications has led 
to the generation of different implementable models with 
wide range of use cases. A thorough analysis of nearly 200 
studies has been conducted earlier to evaluate the methods 
used for assessing DEM accuracy over the past three dec-
ades3. The accuracy of DEMs can be evaluated using various 
sources such as topographic maps, Shuttle Radar Topogra-
phy Mission (SRTM) DEM, Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER), Global 
Digital Elevation Model (GDEM), and stereo-pair aerial pho-
tographs4. These evaluations ensure the usability of DEMs 
in diverse applications related to topography and earth sci-
ences. 
 The generation of multiple DEMs with diverse charac-
teristics provides opportunities for improving the accuracy 
and reliability of geographical applications. Using DEMs 
with different resolutions, accuracies or data sources, resear-
chers can account for uncertainties and limitations in the 
data and obtain a more comprehensive understanding of 
the studied phenomena. Furthermore, the availability of free 
global DEMs improves the accessibility and use of these 
data in various applications. However, it is important to con-
sider the limitations and potential errors associated with 
different DEMs and carefully select and evaluate the ones 
appropriate for specific requirements. 
 Table 1 summarizes previous studies conducted in India 
on assessing elevation accuracy using the root mean square 
error (RMSE) of widely used DEMs5–13. DEM accuracy is 
highly influenced by various aspects of the terrain, includ-
ing spatial resolution, elevation range, land-cover conditions 
and relief. Continuous improvement in the accuracy and 
availability of DEMs enables a more robust assessment of 
the accuracy of susceptibility maps14. The accuracy of a 
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Table 1. Summary of research works conducted in India on elevation accuracy assessment 

 
Author details 

 
Study area 

Landcover and the number of  
reference points considered 

Root mean square error of digital 
elevation model (DEM) used 

   

 

Mahesh et al. Tamil Nadu Creek, canal, beach, dune,  
 grassland, casuarina plantation,  
 barren land, mudflat and  
 settlements (275) 

AW3D30-V3-2.48 m  
SRTM-V3(30 m) – 3.02 m  
Carto-DEM V3R1-3.88 m  
ASTERGDEM V2-8.02 m 

   

Divya Sekhar Bihar, Katarniaght WL, Manali, Flat terrain with agriculture (1612) TDX90    
Vaka et al. Himachal Pradesh Flat terrain with forest cover (28) SRTM 90    
  Snow-covered mountains (36) NASADEM    
Mukherjee et al. Western part of Shiwalik- Highly rugged terrain (31 GCPS) Cartosat-1 – 4.83 m    
  Himalaya  ASTER30 – 16.06 m    
   SRTM30 – 18.91 m    
Rawat et al. Shahjahanpur district Highly rugged terrain and  Cartodem-ASTER – 137.65 m    
   significant variation of Cartodem-SRTM – 186.65 m     
   relief (20 GCPs) ASTER-SRTM – 50.87 m    
Jain et al. Lower Tapi Basin  Narrow valley, hilly terrain,  SRTM (30 m) – 2.88    
 (3837 sq. km)  agricultural fields and coastal ASTER-2 (30 m) – 5.4    
   regions (117) Carto-DEM – 3.5    
   AW3D30 – 2.45    
Patel et al. Maulana Azad National Uneven topography with small Cartosat-1 (30 m) – 3.49    
  Institute of Technology  hills (830) ASTER DEM (30 m) – 3.49    
  (MANIT), Bhopal,  SRTM (90) – 3.72    
  Madhya Pradesh      
Mukherjee et al. Shiwalik Himalaya Rugged terrain with steep slopes,  Cartosat-1 DEM – 3.14–7.24 m    
   ridges and flat topography  

 (11) 
Varying with grid spacing from 
10 to 150 m 

   

Rastogi et al. Chandra and Bhaga basins,  
 Himalayan 

Chandra Basin – 2835 points Cartosat-1 DEM – Chandra  
basin: 10.8 m 

   

  Bhaga Basin – 2160 points Bhaga basin: 9 m    
Thomas et al. (i) Muthirapuzha River  

Basin – (271.75 sq. km) 
Hills and plateau (28) ASTER-GDEM (30 m)    

 (ii) Pambar and river basin  
(288.53 sq. km), Kerala 

 SRTM (30 m)    

   GMTED (30 m)    

 

 

DEM is found to vary from a couple of metres to hundreds 
of metres. The accuracy is also observed to decrease in areas 
with steep terrain. 
 Only a few landslide susceptibility mapping studies 
have been conducted for the Idukki district, Kerala, India, 
which is regularly prone to landslides, using features gener-
ated from DEM. Susceptibility mapping was done using 
ASTER GDEM of 30 m resolution and ML algorithms15,16. 
Landslide factors such as slope, aspect, curvature, topo-
graphic wetness, stream power and topographic rugged-
ness were derived from the DEM. However, many other 
essential features influence landslides directly, and their 
inclusion would help develop a more accurate susceptibility 
model. Additionally, a study on impact of the landslide 
features using DEM with fairly low inaccuracy is required. 
 The freely available DEMs for the Idukki district, Kerala, 
have a resolution of 30 m. Due to the unavailability of 
high-resolution DEMs to the research community, globally 
available 30 m resolution DEMs are used in this study area. 
Therefore, when comparing the DEMs for Idukki, the accu-
racy is considered better, and toposheets are used as abso-
lute values for comparison. The primary objective of this 

study is to identify the most accurate DEM with 30 m resolu-
tion for the Idukki district, Kerala. The DEM options con-
sidered for evaluation are Cartosat-1, ASTER GDEM, 
SRTMGL1, ALOS World 3D-30 m and forest and build-
ings removed Copernicus DEM (FABDEM). The chosen 
DEM will be utilized to derive geomorphological and hy-
drogeological features that directly impact the susceptibility 
of landslides in the study district. 

Review of the study area 

The Idukki district, Kerala, is characterized by its high-alti-
tude plateau, which features rugged mountainous terrain, 
numerous river valleys and deep gorges. It covers an area 
of 4358 sq. km and is known for its varied topography and 
geomorphological features. As shown in Figure 1 the district 
is situated between 90°15′N and 100°21′N lat., 76°37′E and 
77°25′E long. and is characterized by mountains and forests 
that encompass approximately 97% of its total area. The 
northern part of Idukki forms a sub-plateau that is higher in 
altitude compared to the rest of the district. The landform 

Relative relief (m) 
 

Bihar KWLS Manali 
 

1.43 5.88 13.11 
5.34 6.82 17.15 
2.06 5.25  7.41 

 

Relative relief (m) 
 

<200 200–400 >400 
 

21.8 31.75 42.08 
10.4 22.51 29.55 
36.5 50.99 86.75 
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begins at an elevation of 600 m amsl, with the maximum  
altitude reaching up to 2647 m, making it the highest point in 
South India and 13 other peaks standing at over 2000 m in 
height. However, the unique topography of the region also 
makes it highly vulnerable to landslides, with more than 
3500 of them being reported in the past decade, according 
to the Geological Survey of India (GSI)17. Therefore, accu-
rate geomorphological characterization derived from an 
accurate DEM is essential for building precise landslide-
susceptibility mapping models to mitigate landslide risks 
in the region. The Idukki district is known for its varied 
topography and geomorphological features, including 
mountains, forests and steep altitudes. The complexity of 
terrain characteristics and its vulnerability to landslides 
warrants accurate DEM data for developing effective 
landslide susceptibility models for the region. 

Data sources 

Topographic map of the Idukki district, Kerala, from the 
open series map (OSM) of the Survey of India (SoI), and five 
DEMs, viz. Cartosat-1 V3, ASTER GDEM V3, SRTMGL1 
V3, ALOS World 3D V3.2 and FABDEM version 1.0 
were used in this study. SoI OSMs were obtained from the 
Kerala State Remote Sensing and Environment Centre 
(KSREC), Thiruvananthapuram. The geoportal Bhuvan of 
the National Remote Sensing Centre provided Cartosat-I 
DEM data. SRTMGL1 data was downloaded from the 
 
 

 
 

Figure 1. Location map of the study area, Idukki district, Kerala, India. 

Earth Resource Observation and Science Centre (EROS) 
of USGS, ASTER data from the Terrestrial Remote Sensing 
Data Analysis Centre, and ALOS World 3D data from 
Open-Topography. FABDEM was obtained from Fathom 
Global, an environmental service company which provides 
flood mapping, risk analytics and insurance recovery service. 
The height system used by various data sources and in the 
present study was geoid; Earth Gravitational Model of 1996 
(EGM96). It represents the equipotential surface of the 
Earth’s gravity field that best fits the mean sea level. 
Within the framework of this study, landslide information 
collected from GSI and KSREC for the period 2007–20 
was archived and geo-referenced on the ArcGIS platform. 
Discrete point data were identified to provide geographical 
locations and validated according to reports and maps of 
landslide history. Based on the available data, landslides 
had occurred in the Idukki district, Kerala, at 3973 loca-
tions. These are represented in Figure 2. 

Topographic map 

Topography is a decisive factor in the functioning of various 
natural processes. The topographic map of a region repre-
sents ground relief, forest cover, drainage, populated areas,  
 
 

 
 

Figure 2. Location of landslides in Idukki district, Kerala. 
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Table 2. Characteristics of DEMs 

DEM characteristics Cartosat-I DEM ASTER-GDEM NASA SRTMGL1 AW3D30 FABDEM 
 

Release year 2005 2019 2015 2021 2020 
Version V3 V3 R1 V3 V3.2 V1-0 
Data format GeoTIFF GeoTIFF GeoTIFF GeoTIFF GeoTIFF 
Coordinate system GCS_WGS_1984 GCS_WGS_1984 GCS_WGS_1984 GCS_WGS_1984 GCS_WGS_1984 
Satellite Cartosat-1 Terra Space shuttle  

 endeavour 
Advanced land  

 observing satellite 
Sentinel-1 

Resolution 1 arcsec (30 m) 1 arcsec (30 m) 1 arcsec (30 m) 1 arcsec (30 m) 1 arcsec (30 m) 
Geographic projection Latitude, Longitude Latitude, Longitude Latitude, Longitude Latitude, Longitude Latitude, Longitude 
Datum WGS_1984 (H)  

EGM96 (V) 
WGS_1984 (H)  

EGM96 (V) 
WGS_1984 (H)  

EGM96 (V) 
WGS_1984 (H)  

EGM96 (V) 
WGS_1984 (H)  

EGM96 (V) 
Data sources http://bhuvan.nrsc. 

gov.in 
https://earthexplorer. 

usgs.gov/ 
https://earthexplorer. 

usgs.gov/ 
https://www.eorc.jaxa.jp/ 

ALOS/en/index_e.htm 
https://www.fathom.global/ 

product/fabdem/ 
Last accessed 15 January 2022 20 March 2022 20 March 2022 8 April 2022 April 2023 
 

 

 
 

Figure 3. Spot height points on the topographical map. 
 
 
transportation routes, artificial features, etc. It, therefore, 
requires quantitative analysis and correction to determine 
the relative effectiveness of its constituents and operating 
mechanisms18. The contour lines with equal elevation points 
help depict the shape and elevation of the land. This map 
represents the three-dimensional undulating terrain on a 
two-dimensional surface with universal transverse mercator 
(UTM) projection and World Geodetic System 1984 
(WGS84) datum. The vertical datum is the mean sea level 
as defined by EGM96. The topographic map of Idukki 

comprises 14 different sheets of OSM of SoI, namely 
C43K16, C43Q9, C43Q13, C43Q14, C43Q15, C43L3, 
C43L4, C43L8, C43R1, C43R2, C43R3, C43R5, C43R6 
and C43R7, in 1 : 50,000 scale with 20m contour interval. 

Digital elevation models 

DEMS help extract topographical parameters to analyse 
the overall shape of the Earth’s surface. DEM forms a 
regular matrix representation of the continuous variation 
of relief over space and is a digital model of the Earth’s 
surface. It provides information about the elevation or re-
lief of a terrain. The registration process of DEMs is crucial 
as it enables the seamless integration of a DEM with other 
geospatial datasets. This integration allows for various ap-
plications, including terrain analysis, hydrological model-
ling, visualization, mapping, etc. This can be achieved using 
surface matching algorithms and the iterative closest point 
(ICP) algorithm19. These methods involve finding corres-
ponding points or features in multiple DEMs and aligning 
them for a consistent representation of the terrain. 
 The DEMs used here include Cartosat-1 V3, ASTER-
GDEM V3, SRTM-GL1 V3, ALOS world 3D V3.2 and 
FABDEM V1.0. All the DEMs and the toposheets used 
have been co-registered and are in the UTM Zone 43 N 
projection and WGS 84 datum. Table 2 lists the characteris-
tics of these DEMs20–26. 

Methodology 

This study aims to identify the most accurate DEM and 
then extract landslide-influencing factors from it. Identifica-
tion of the accurate DEM is a two-step process that invol-
ves: (i) the selection of points from the same points of 
spot heights and DEMs and (ii) the evaluation of DEMs. 
Points selected were identical for spot heights and DEMs, 
and care was taken to identify open locations. Ground ob-
servations from the SoI OSM provide positional information 
with reference data. Randomly specific topographic points 

http://bhuvan.nrsc.gov.in/
http://bhuvan.nrsc.gov.in/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://www.eorc.jaxa.jp/ALOS/en/index_e.htm
https://www.eorc.jaxa.jp/ALOS/en/index_e.htm
https://www.fathom.global/product/fabdem/
https://www.fathom.global/product/fabdem/
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Table 3. Statistical measures 

Statistical measure Equation Description 
 

Error (Xe) (Xi – Xt) Provides elevation difference 
Mean (µ) 

1

1/
n

i
i

n Xµ
=

= ∑
 

It is the average of the samples 

Standard deviation (SD) 2( )
SD

1
iX

n

µ−
=

−
∑

 

It shows the distribution of values across a given dataset 

Mean bias error (MBE) 

1

MBE 1/ ( )
n

i t
i

n X X
=

= −∑
 

Bias (Xi – Xt) is defined as the estimate of systematic error.  
The positive values indicate overestimation and negative  
values indicate underestimation of actual values (Xt) 

Mean absolute error (MAE) 

1

MAE 1/ |( )|
n

i t
i

n X X
=

= −∑
 

It is the average of the absolute values of the errors (Xi – Xt),  
thereby indicating the average magnitude of the errors 

Root mean square error (RMSE) 
2

1

RMSE 1/ ( )
n

i t
i

n X X
=

= −∑  
This is a commonly used measure of the difference between  

values DEMs and observed values over the reference 

Xi, DEM elevation corresponding to the reference point; Xt, Elevation corresponding to the same reference point of the toposheet. 
RMSE is mainly used to verify how close the estimates are to the actual topographic height. This is used as a measure of DEM  
assessment, and lower the RMSE, better is the accuracy. The DEM with minimal error is chosen as the most accurate model. 

 
 
were chosen and compared with their respective elevation 
in DEM to determine the model accuracy. This process 
was performed for all DEMs. The Geoid height system in 
this study represents the equipotential surface of the 
Earth’s gravity field that best fits the mean sea level. This 
ensures a consistent reference surface for elevation meas-
urements. To benchmark, it is required to bring all datasets to 
the exact WGS-1984 horizontal and EGM96 vertical datum. 
Hence, Cartosat-1 data were converted into EGM96 using 
Geospatial Data Abstraction Library (GDAL) utilities. 
The steps involved in the proposed methodology are out-
lined below. 

Random points selection 

Publically available OSMs of SoI were used in this study. 
Spot heights for various locations were selected from the 
OSMs. Two hundred and sixty-four random points of the 
topographical map were obtained as reference data. These 
are marked as spot heights in Figure 3. The Idukki district, 
Kerala, showcases a wide range of topography, encom-
passing high-altitude plateaus, rugged mountainous terrain, 
numerous river valleys, deep gorges and forested regions. 
The landform of the district begins at an elevation of 
600 m amsl. The DEM accuracy generally decreases from 
the plains to the hilly terrain, which warrants elevation 
classification in the comparison of DEMs. Moreover, the 
geographical features of the district were studied in terms 
of landslide susceptibility, with historical data indicating 
an increase in landslide susceptibility with the increase in 
elevation. As a result, the accuracy of DEM assessment is 
based on various elevation categories to account for the 
presence of these distinctive geographical features. As a 

result, the accuracy of DEM assessment is based on various 
elevation categories to account for the presence of these 
distinctive geographical features. The spot height points 
were categorized into four different regions based on con-
tour elevation, namely (a) low-elevation area (1–782 m), 
(b) moderate elevation area (783–1330 m), (c) high eleva-
tion area (1331–1910 m) and (d) very high elevation area 
(1911–2637 m) for comparison of accuracies across eleva-
tions. Digitization converts the geographical data from 
scanned images to vector data by plotting the characteris-
tics as a point layer on ArcGIS, and features of the plotted 
map are captured as point coordinates. 

Evaluation of DEM accuracy 

For all DEMs, elevation corresponding to the 264 topogra-
phic reference points was extracted using interpolated 
resampling methods through the elevation analysis service 
of ArcGIS. For each of the extracted values, various statisti-
cal measures such as mean (µ), standard deviation (SD), 
mean bias error (MBE), mean absolute error (MAE) and 
root mean square error (RMSE) were determined to evalu-
ate the DEMs (Table 3)27,28. 

Feature derivation 

Based on the knowledge of the domain expert, features 
that influence landslides were derived from the highly  
accurate DEM. The DEM features were classified into two 
groups, namely geomorphological and hydrogeological 
features. This included 12 features, viz. slope angle, aspect, 
elevation, profile curvature, plan curvature, distance to road, 
relative relief, terrain ruggedness index (TRI) drainage  
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density, height above near drainage (HAND), topographic 
wetness index (TWI) and stream power index (SPI). 
 Slope angle is an essential geomorphological factor deter-
mining shear forces, shear stresses and saturation levels29. 
The aspect of the slope, defined by its azimuth, has multi-
faceted effects on the exposure to sunlight, precipitation 
impacts, weathering processes, soil characteristics, canopy 
development and root growth. These interrelated factors 
collectively shape the ecological dynamics and environ-
mental conditions of the slope, showcasing the complex 
interplay between topography, climate and ecosystem de-
velopment30,31. Elevation is also a significant factor in 
landslides because the high and undulating surface results 
in a steep slope that is reliable for slope instability. The 
curvature of a hill serves as a valuable indicator of its inher-
ent shape and has profound implications for understanding 
landslide dynamics. By recognizing the connection between 
curvature, water accumulation, soil stability and triggering 
events, researchers and practitioners can take proactive 
measures to mitigate landslide risks and ensure safer land 
use practices. Profile curvature measures the surface curve 
in one slope direction and enhances the erosion and depo-
sition process. In contrast, plan curvature in a horizontal 
plane influences the convergence or divergence of water 
during run-off. Two factors, namely drainage density and 
HAND, were used to determine the effect of the river32. 
SPI and TWI are the most critical hydrological factors 
predicting the susceptibility of landslides. SPI indicates 
erosion and discharge power in a specific area as repre-
sented in eq. (1). 
 
 sSPI tan( ),*A β=  (1) 

 
where As is a specific catchment area and β is the slope 
angle (°). 
 TWI is utilized to evaluate and communicate specific 
hydrological characteristics within a given geographical 
area. In the context of hydrology and environmental science, 
TWI is particularly employed to assess moisture content, 
groundwater conditions and surface flow accumulation 
within a watershed or landscape. This quantitative parame-
ter is calculated using eq. (2). 
 

 TWI ln ,
tan( )
α
β

 
=  

 
 (2) 

 
where α is the cumulative ascending drainage zone across 
a point and β is the slope angle (degrees) at the point. 
 With respect to human activities, the most crucial factor 
is ‘distance to road’. Constructing roads on steep slopes 
could lead to the elimination of foundational support from 
the lower terrain. Modifying the slope and increasing the 
steepness of a region increases the risk of slope failure33. 
The drainage system combines slope, lithology and topo-

graphy extracted from the DEM to determine the drainage 
density. 

Results 

The performance of the DEMs was examined based on verti-
cal accuracy. The features were derived from the accurate 
DEM, and the landslide points were assessed. A detailed 
discussion is presented below. 

Performance of the DEMs 

The elevation corresponding to the 264 randomly selected 
points on the topographic map was generated separately for 
each DEM. The maximum elevation of 2637 m in reference 
data corresponded to 2512, 2548, 2587, 2621 and 2625 m 
of Cartosat-I, ASTER-GDEM, SRTM-GL1, AW3D30 and 
FABDEM respectively. Figure 4 shows the elevation error 
for all 264 points of all DEMs. 
 From the figure, the error is found to increase with ele-
vation. Table 4 lists the statistical measures for all 264 
points. MBE of FABDEM outperforms the others in asses-
sing systematic errors in estimation compared to a refer-
ence. A lower MAE value of FABDEM indicates greater 
model accuracy. RMSE of FABDEM is 41.79 m, followed 
by AW3D30, SRTMGL1 ASTER-GDEM and Cartosat-1. 
The low RMSE of FABDEM indicates that the values 
generated are close to the reference data showing better 
model accuracy. 
 Based on the elevation category, a total of 11 spot 
height points in low elevation area, 160 points in moderate 
elevation, 47 points in high elevation and 46 points in 
very high elevation area were identified and mapped to 
DEM. The area corresponding to each peak was obtained, 
and a similar procedure was followed for all DEMs. Figure 5 
shows the elevation maps of FABDEM corresponding to 
four different elevation categories. Table 5 lists the statis-
tical measures for these categories. 
 
 

 
 

Figure 4. Elevations at different spot heights. 
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Table 4. Statistical comparison between topographical map spot heights and DEMs 

Parameters TopoMap Cartosat-1 ASTER-GDEM SRTM-GL1 AW3D30 FABDEM 
 

Mean 1307.88 1317.27 1312.11 1319.03 1326 1329 
SD 525.20 471.32 472.8 476.13 475.05 478.61 
MBE  –35.3 –40.24 –33.65 –27 –24 
MAE  40.7 43.74 37.58 31.34 28.02 
RMSE  62.57 61.25 57.31 52.05 41.79 

 
 

 
 

Figure 5. Elevation map of FABDEM for (a) low, (b) moderate, (c) high and (d) very high elevation areas. 
 
 
 Among the elevation categories of DEMs, FABDEM 
showed lower MAE and RMSE. RMSE increased from a 
low to a high value with the increase in elevation. RMSE 
value of low, moderate, high and very high elevation  
regions of FABDEM was 24.81, 29.53, 40.82 and 71.69 m 

respectively. The lower RMSE value of FABDEM for  
all elevations validates its overall vertical accuracy.  
The characteristics of the terrain being modelled could 
explain the increase in RMSE with increasing eleva- 
tion. 
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Table 5. Statistical comparison of low, moderate, high and very high regions of topographical map reference  
 spot heights and DEM elevations 

Parameters TopoMap Cartosat-1 ASTER-GDEM SRTM-GL1 AW2D30 FABDEM 
 

Low elevation area (600–782 m) 
 Mean 522.91 698.65 696.82 697.8 709 707 
 SD 215.43 83.3 73.50 76.25 73.87 65.5 
 MBE  –5.2 –6.12 –5.9 –0.45 –1.29 
 MAE  12.24 12.45 12.5 10.04 7.5 
 RMSE  37.62 32.92 35.07 33.81 24.81 
Moderate elevation area (783–1330 m) 
 Mean 1067.01 1043.49 1036.96 1041.79 1049 1050 
 SD 128.05 134.25 130.28 134.01 130.67 133.35 
 MBE  –23.5 –30.05 –25.22 –18.04 –16.41 
 MAE  29.86 35.12 30.9 24.50 21.77 
 RMSE  44.69 45.46 44.19 38.87 29.53 
High elevation area (1331–1910 m) 
 Mean 1598.21 1554.19 1545.82 1557.76 1566 1570 
 SD 179.08 168.16 171.32 165.30 165.25 171.14 
 MBE  –44.01 –52.38 –40.44 –31.85 –27.85 
 MAE  50.45 52.38 40.78 32.70 31.38 
 RMSE  69.79 67.49 55.13 50.77 40.82 
Very high elevation area (1911–2637 m) 
 Mean 2258.58 2175.37 2177.5 2187.95 2194 2202 
 SD 174.73 181.18 177.07 182.57 182.89 188.9 
 MBE  –83.21 –81.08 –70.63 –64.78 –56.91 
 MAE  83.31 81.30 70.63 64.86 57 
 RMSE  101.03 97.12 93.01 85.93 71.69 

 
 
Feature derivation 

The geomorphological and hydrogeological features of 
Idukki were extracted from FABDEM and classified into 
different classes (Figure 6 a–l). Table 6 shows the distri-
bution and percentage of surface existence of each class 
over different features. 
 From Table 6, the following inferences can be made: 
 (i) The slope classes vary from very gentle to very steep 
slopes (Figure 6 a). Moderate and steep slopes collectively 
cover 23.19% and 34.7% respectively, of the total area. 
 (ii) Due to the topography of the study region, the ele-
vation feature is divided into ten different classes (Figure 
6 c). These classes have a minimum height of 20 m and a 
maximum height of 2660 m. 
 (iii) Aspect classes aid in the estimation of solar light-
ing for each location of the study region. The aspect fea-
ture of the Idukki district, Kerala, is classified into eight 
groups (Figure 6 b). 
 (iv) Plan curvature affects the erosion and downward 
motion of water flow and is classified into five classes 
(Figure 6 d). Among the distribution area, the convex re-
gion covers more than 80% of the surface. 
 (v) Profile curvature relates to the convergence and di-
vergence of flow across a surface. As shown in Figure 6 e, 
profile curvature is grouped into five classes. Majority of 
the area is covered by the concave curvature class. 
 (vi) The effect of topography on the location of saturated 
sources of surplus production is represented by TWI (Fig-

ure 6 f ). Among the five classes, more than 70% of the area 
is covered with ‘low’ index values. 
 (vii) TRI is a measurement of topographic heterogeneity 
(Figure 6 j). It is grouped into five classes, i.e. from very 
low to very high, with values between 0 and 1. More than 
60% is spread across with moderate and high index values. 
 (viii) Road construction necessitates the extraction of 
materials from lower slopes that display attributes reminis-
cent of potential destabilization. Nine classes represent 
‘distance to road’ (Figure 6 g). It is found that short-dista-
nce classes cover more than 70% of the surface area. 
 (ix) The relative relief provides the real change in altitude 
in a unit area relative to its local base level. Figure 6 h de-
picts the seven classes of relative relief. Also, 30.24% of 
the surface area has relative relief between 850 m and 
1050 m. 
 (x) Figure 6 i represents five different classes of drainage 
density. More than 60% of the surface area is covered by a 
‘low’ drainage density class (4–7 km/sq. km). 
 (xi) The HAND feature represents the vertical distance 
between a location and its nearest stream. The HAND classes 
are grouped into five (Figure 6 k). The low HAND classes 
are spread over most of the zone, collectively covering more 
than 80%. 
 (xii) SPI provides potential stream flow erosion at a 
given point. As represented in Figure 6 l, SPI is grouped 
into five classes varying from very low to very high. The 
major part of the area is covered by moderate, high and 
low SPI classes. 
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Table 6. Class distribution and percentage of surface existence over different features 

 
Features 

 
Class values 

Distribution area 
(sq. km) 

Percentage of  
surface existence 

 
Class label 

 

Slope (°) 0–8 750.69 17.19 Very gentle 
  8–15 1,083.08 24.80 Gentle 
  15–21 1,012.59 23.19 Moderate 
  21–27 824.64 18.85 Moderate steep 
  27–36 537.13 12.30 Steep 
  36–75 157.7 3.60 Very steep 
Aspect (°) East (67.5–112.5) 320.05 7.3  
  North (0–22.5) 586.23 13.3  
  North (337.5–360) 442.91 10.14  
  Northeast (22.5–67.5) 461.74 10.58  
  Northwest (292.5–337.5) 583.48 13.3  
  South (157.5–202.5) 665.82 15.25  
  Southeast (112.5–157.5) 498.39 11.4  
  Southwest (202.5–247.5) 480.6 10.99  
  West (247.5–292.5) 266.85 6.11  
Profile curvature –26 to –1.5 2.25 0.0005 High negative 
  –1.5 to –0.43 34.67 0.80 Negative 
  –0.43 to 0.2 217.32 4.97 Close to zero 
  0.2 to 1.9 762.88 17.47 Positive 
  1.9 to 27 3,348.72 76.70 High positive 
TWI <5.0 1,777.41 40.71 Very low 
  5.0–7.0 1,658.61 38 Low 
  7.0–9.0 577.48 13.22 Moderate 
  9.0–13.0 237.19 5.43 High 
  >13.0 115.15 2.63 Very high 
TRI <0.3 128.72 2.9 Very low 
  0.3–0.4 869.23 19.59 Low 
  0.4–0.5 1,500.26 33.82 Moderate 
  0.5–0.6 1,337.00 30.13 High 
  >0.6 600.79 13.55 Very high 
Distance to road (m) <1000 1,878.16 43.02  
  1,000–2,000 1,225.80 28.07  
  2,000–3,000 550.28 12.6  
  3,000–4,000 295.76 6.8  
  4,000–5,000 163.20 3.7  
  5,000–6,000 117.68 2.7  
  6,000–7,000 76.28 1.74  
  7,000–8,000 41.68 0.95  
  >8000 6.92 0.38  
Relative relief (m) <250 360.35 8.25  
  250–450 1,061.16 24.3  
  450–650 423.13 9.6  
  650–850 828.44 18.97  
  850–1,050 1,320.7 30.24  
  1,050–1,250 218.76 5.01  
  1,250–1,450 152.46 3.49  
Drainage density  0.5–4 803.63 18.41 Very low 
 (km/sq. km) 4–7 2,717.82 62.26 Low 
  7–11 748.99 17.16 Moderate 
  11–14 82.36 1.89 High 
  14–17 12.48 0.28 Very high 
HAND (km/sq. km) 0–50 2,292.38 53.2 Very low 
  50.1–100 1,208.65 28.05 Low 
  100.1–200 543.55 12.61 Moderate 
  200.1–400 209.01 4.86 High 
  >400 54.96 1.27 Very high 
SPI <400 423.42 9.7 Very low 
  400–7,500 858.11 19.65 Low 
  7,500–25,000 1,429.97 32.75 Moderate 
  25,000–55,000 1,280.22 29.3 High 
  >55,000 374.12 8.6 Very high 
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Figure 6. Feature classes corresponding to (a) slope, (b) aspect, (c) elevation, (d) plan curvature, (e) profile curvature, ( f ) topographic wetness in-
dex, (g) distance to road, (h) relative relief, (i) drainage density, (j) terrain ruggedness index (TRI), (k) height above near drainage (HAND) and (l) 
stream power index (SPI). 
 

 
Assessment of landslides based on feature  
classification 

The features for the entire Idukki district, Kerala, were de-
rived from AW3D30 and mapped to the landslide inventory 
data to evaluate the presence of landslide points corre-
sponding to different feature classes. A total of 14,430  
locations were selected for assessment. Figure 7 a–i shows 
the number of locations under each class of all features for 
this assessment. 

 Figure 8 shows the percentage of landslides for differ-
ent feature classes. 
 In Figure 8 a, the trend line shows that the higher the 
slope, the more likely a landslide occur. More than 80% of 
landslide points fall into different steep classes of the 
slope. The probable aspect classes where landslides have 
commonly occurred are north, south, northeast and south-
west (Figure 8 b). The distribution of landslides across ele-
vation categories, as depicted in Figure 8 c, indicates that 
higher elevations are predominantly associated with a 
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Figure 7. Number of locations under each class of all features: (a) slope, (b) aspect, (c) elevation, (d) profile curvature, (e) relative relief, ( f ) distance to 
road, (g) drainage density, (h) HAND and (i) SPI. 
 
 
greater frequency of landslides. Here, most landslide points 
are in the elevation above 1900 m. The upward curve behav-
iour of profile and plan curvature directly impacts land-
slides (Figure 8 d and e) respectively. Among the nine 
classes of ‘distance to road’ features, those with relatively 
small distances closely resemble landslide points (Figure 
8 f ). Considering drainage density, most landslides are locat-
ed at the head of the drainage classes with higher density 
(Figure 8 g). Higher wetness index values indicate wetter 
conditions, which can increase the likelihood of slope fail-
ure and landslides (Figure 8 h). The percentage of landslide 
points among the HAND classes shows that the risk of 
landslides increases as the vertical distance between a loca-
tion and its nearest creek increases (Figure 8 i). More vari-
ation in elevation in a unit area relative to its local base 
level increases the risk of landslides (Figure 8 j). The per-
centage of landslides is more within the area having high 
relative relief. More than 50% of landslides fall into this 
category. Figure 8 k illustrates that elevated values within 
the higher SPI class are indicative of increased occurrences 
of landslides. These landslide influencing factors (LIFs) 
assessments can be used to determine the probability of 
landslide occurrences. 
 This study uses hydrogeological and geomorphological 
characteristics obtained from FABDEM that directly affect 
the susceptibility to landslides in the Idukki district, Kerala. 
The combination of features includes slope angles ranging 
from 27° to 75°, both north and south aspects, elevation 

between 1400 and 2660 m, a distance less than 1000 m 
from the roads and a high convex nature of profile curvature, 
ranging from 1.9 to 27. The variables impacting the inci-
dence of landslides include relative relief above 6000 m, 
high drainage density and values exceeding 400 m for the 
HAND metric. Moreover, index values surpassing 9 for TWI, 
0.5 for TRI and 5.0 for TPI have a direct effect on the oc-
currence of landslides within this geographical area. 

Conclusion and future works 

This study evaluates the accuracy of DEMs such as Carto-
sat-I, ASTER-GDEM SRTM-GL1, AW3D30 and FABDEM 
of 30 m resolution for the Idukki district, Kerala. The 
DEMs were mapped onto 264 spot heights selected ran-
domly as reference points from the SOI topographical map 
and for different elevation categories. The performance of 
the various DEMs for all 264 points and elevation catego-
ries was evaluated using statistical measures. The RMSE 
of FABDEM was 41.79 m, which is low, followed by 
AW3D30, SRTM-GL1, ASTER-GDEM and Cartosat-I. With 
respect to elevation-wise accuracy, FABDEM was highly 
error-free, even in the high-elevation regions. Twelve geo-
morphological and hydrological features were derived 
from FABDEM and categorized using the ArcGIS Spatial 
Analyst tool. The distribution of feature classes and their 
proportion of surface existence were plotted. Landslides 
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Figure 8. Percentage of slide points under (a) slope, (b) aspect, (c) elevation, (d) profile curvature, (e) plan curvature, ( f ) distance to road, (g) 
drainage density, (h) TWI, (i) HAND, (j) relative relief and (k) SPI. 
 
 
were assessed by calculating their percentage existence on 
different feature classes. The study identified that a com-
bination of features played a significant role in determin-
ing landslide occurrences in this region. The results reveal 
that the FABDEM model is the best for analysing land-
slide susceptibility mapping of the Idukki district, Kerala. 
 As a continuation of this work, a decision support sys-
tem can be developed that utilizes the geomorphological 
and hydrogeological features derived from these open  
accesse 30 m resolution DEMs. The long-term aim is to 
assist the local Government bodies and the public in iden-
tifying the susceptibility of their location using publicly 
available DEM. This decision support system could aid in 
various applications related to topography and the envi-
ronment, leveraging the available updated DEM data for 
the study region at any point. 
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