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Machine learning-based approach on PRISMA data for mapping  
Nidar ophiolites in Ladakh, India 
 
Classification of minerals based on spectral 
signatures from satellite-based hyperspec-
tral sensors is crucial for understanding the 
geology of a region. Machine learning 
(ML) techniques have proven to perform 
flawlessly in remote sensing, as they reduce 
tedious human efforts by automating cal-
culations. Further, ML helps to distinguish 
various classes, irrespective of noise pre-
sent in the data. In the present study, we 
employed ML-based classification techni-
ques on hyperspectral data from the recently 
launched (March 2019) PRISMA (PRecur-
sore IperSpettrale della Missione Applica-
tiva) mission by the Italian Space Agency 
(ASI, Rome, Italy), to assess their accuracy 
in the lithological mapping of ophiolites. 
These are a distinct variety of igneous rock 
assemblages comprising ultramafic, mafic 
and volcanic lithology representing frag-
ments of oceanic crust and the underlying 
mantle1. With diverse mineralogy and sam-
pling of the mantle, ophiolites are known 
for hosting high-temperature and pressure 
minerals, including economically important 
diamonds and chromites, and serve as ex-
cellent probes to study the deep-mantle 
processes1. Further, the association of oph-
iolites with collisional orogenic belts pro-
vides significant information about major 
tectonic events on Earth. 
 This study classifies the major lithounits 
present in the Nidar ophiolite complex, 
which is exposed towards the southeast of 
Ladakh, India (32°45′–33°35′N and 78°–
79°E). Geologically, the ophiolite sequences 

at Nidar lie between the metamorphics of 
the Tso Morari Complex (TMC) in the south 
and sedimentaries of the Indus and Kargil 
formations to the north. They start with ul-
tramafic rocks (spinel-bearing dunite, peri-
dotite and pyroxenite veins) at the base, 
followed by mafic (massive to layered 
gabbro) in the middle (mantle section) and 
volcano-sedimentary assemblage (basaltic 
flows, conglomerates, shale, chert, siltstone 
and jasperite; crustal section) on the top2,3. 
The molasse sediments of the Indus and 
Kargil formations are sedimentary in com-
position, composed of continental shale, grit, 
conglomerates, sandstone and limestone, 
and overlain by the Ladakh Batholith with 
composition essentially of granites and 
granodiorites4. The southern portion of the 
Nidar ophiolites is associated with Zildat 
ophiolite melanges (ZOM), which are vol-
canogenic, and further south, there are 
metamorphics of TMC5,6. Figure 1 a 
shows the geological map of the Nidar 
ophiolites section1. The clastic rocks deri-
ved from the adjacent sections are com-
mon in all the lithological units distributed 
by parallel streams cutting the complex 
and joining the Indus towards the north.  
 For remote sensing of ophiolites, the 
dominant mineral phases for ultramafic 
and mafic lithology include olivine, pyrox-
ene, chromite, spinel and plagioclase, while 
for sedimentary and associated granites, 
they are quartz, K-feldspar, calcite, dolo-
mite. The altered rocks formed from weath-
ering include serpentine, carbonates, iron 

oxides, clay minerals and hydroxides. All 
these primary and secondary phases are 
recognized by their diagnostic absorption 
features in the visible and near-infrared re-
gion (VNIR) arising due to electronic tran-
sition and vibrations7 (Table 1). There is a 
tremendous scope to study these assem-
blages using high-resolution remote sensing, 
and when combined with ML classifiers, 
the results are closer to the ground truth. 
While considering a large number of classes 
with similar spectral characteristics, tradi-
tional classification techniques have limi-
tations. Classical methods work on a static 
mathematical model, require human inter-
vention and cannot handle noisy data easily. 
ML-based classification techniques have 
been proven to do away with these con-
straints. The present classification based 
on mineral composition has used ML algo-
rithms, namely artificial neural network 
(ANN), extreme gradient boosting (XG- 
Boost), random forest (RF) and support 
vector machine (SVM). They have been 
applied to one of the hyperspectral data 
image tiles of the PRISMA sensor availa-
ble for the study region. PRISMA provides 
free hyperspectral imaging data at 30m 
spatial resolution in 239 bands in the visi-
ble, near and short-wave infrared region 
(400–2500 nm) with 12 nm spectral reso-
lution and 30 km swath coverage8. The 
downloaded level-2 reflectance product 
(L2D) of the PRISMA data tile was geo-
referenced and layer-stacked in ENVI®. 
After processing for noise removal and 
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Figure 1. a, Geological map of the study area – Nidar ophiolites, Ladakh, India – showing the 
various stratigraphic successions1,2. The red box indicates the coverage of PRISMA data with re-
sultant outputs shown from the machine learning-based classification algorithms, namely (b) arti-
ficial neural network, (c) support vector machine, (d) XGBoost and (e) random forest.  
 
 

Table 1. Diagnostic absorption features in reflectance spectra (visible 
and near-infrared region (VNIR) range) of important mineral phases  
  associated with ophiolites and overlying sedimentary succession  

Mineral phase Important band centre (µm)  
in VNIR range 

 

Olivine 1.03 
Pyroxene 0.9–1 and 1.9–2.1 
Chromite 2.2 
Spinel 2.1 
Serpentine 2.3 and minor 2.1 
Limestone, dolomite 2.32–2.34 
Chlorite, epidote Between 2.3 and 2.4 
Plagioclase 1.25 
Hematite 0.8 
Albite, muscovite and illite Between 2.1 and 2.2 
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Table 3. Detailed classification report for each algorithm 

Classification ANN RF SVM XGBoost 
 

Class P R F1 S P R F1 S P R F1 S P R F1 S 
 

0 1 1 1 4 1 1 1 4 1 1 1 4 1 1 1 4 
1 1 1 1 4 1 0.25 0.4 4 1 1 1 4 1 0.5 0.67 4 
2 1 1 1 4 0.7 0.5 0.57 4 0.75 0.8 0.75 4 1 0.75 0.86 4 
3 0.73 1 0.8 8 0.9 1 0.94 8 1 1 1 8 0.89 1 0.94 8 
4 0.56 1 0.7 5 0.5 0.4 0.44 5 0.8 0.8 0.8 5 0.2 0.2 0.2 5 
5 1 1 1 9 1 1 1 9 1 1 1 9 1 1 1 9 
6 1 1 1 7 0.6 0.71 0.63 7 1 0.9 0.92 7 0.83 0.71 0.77 7 
7 1 1 1 9 0.6 0.78 0.7 9 0.82 1 0.9 9 0.64 1 0.78 9 
8 1 1 1 11 0.9 1 0.96 11 1 1 1 11 1 1 1 11 
9 0 0 0 7 0.7 0.57 0.62 7 0.83 0.7 0.77 7 0.4 0.29 0.33 7 
Accuracy   0.9 68   0.78 68   0.93 68   0.79 68 
Macro average 0.83 0.9 0.9 68 0.8 0.72 0.73 68 0.92 0.9 0.91 68 0.8 0.74 0.76 68 
Weighted average 0.83 0.9 0.9 68 0.8 0.78 0.77 68 0.93 0.9 0.93 68 0.8 0.79 0.79 68 
P, Precision; R, Recall; F1, F1 score; S, Support. 
 
 
extraction of pure endmember spectra, train-
ing data were prepared based on the domi-
nant lithological units/classes of the region 
(TMC, ophiolite melanges, ultramafics, 
mafics, volcanics, Kargil and Indus for-
mations, Ladakh Batholith and water bod-
ies). A total of ten classes were delineated, 
performing a pixel-based classification ap-
proach. A total of 10 classes were deline-
ated using pixel-based classification and 
their comparison with spectral library. 
These also contained a class which includ-
ed pixels with low signal-to-noise ratio. 
Further, a total of 336 pixels were extract-
ed for training dataset based on spectral 
variability of the above 10 classes from the 
processed PRISMA reflectance data (level-
2D product). These spectra were validated 
based on the spectral profile extracted for 
the endmembers of the various lithounits1. 

To determine the accuracy of the various 
models, we used the pre-defined function of 
the Scikit-Learn library called train_test_ 
split, which randomly splits the labelled 
data into training and testing data. The 
split was done in the ratio 80 : 20, where 
268 pixels were used for training and 68 
pixels were used for validation from the 
total labelled pixels (336). Table 2 shows 
the accuracy of the various algorithms 
used. 
 Results indicate that the highest accura-
cy is given by SVM (92.64%), followed by 
ANN, XGBoost and RF (77.94%).  
 Figure 1 b–e presents the high-contrast 
colour map showing the different lithounits 
of Nidar ophiolites and the associated un-
derlying and overlying rock successions 
from the different outputs. As can be obser-
ved from the results based on performance 

and accuracy assessment from the various 
ML-based algorithms, which is described 
briefly in the classification report of each 
algorithm mentioning important parameters 
to assess quality, such as precision, recall, 
f1 score, support, etc. (Table 3), it can be 
inferred that the lithology of the study area 
is best distinguished by SVM. The order of 
dimensionality of hyperspectral data is 
high; for example, in this case, 233 bands 
are segregated into ten classes. Spectral 
mixing also makes the recognition of pure 
spectra from the study area ambiguous, 
suggesting deep neural network-based clas-
sification as an efficient tool, given its con-
siderable ability to handle large volumes 
of data even on fewer training samples. It 
can classify high-dimensional data more 
accurately than the other techniques due to 
its ability to consider data geometry in the 

Table 2. Details of machine learning (ML)-based classification algorithms, applied parameters and  
  accuracy assessment used in the present study 

Algorithm Hyperparameter Range Value chosen Accuracy (%) 
 

Artificial neural network  
 (ANN) 

Learning rate 0.1–1e–14 1e–4 90.04 

Support vector machine  
 (SVM) 

Kernel Linear 
Penalty (C) 0–30 27 92.64 
Kernel Polynomial 
Degree 1–12 02 48.52 
Penalty (C) 1–30 17 75 
Gamma 0.1–1 0.6 89.70 
Kernel Radial basis function 
Penalty (C) 1–30 26 82.35 
Gamma 0.1–1 0.4 89.70 

XGBoost Trees 100–1500 1100 77.94 
Learning rate 0.1–3 0.2 79.41 

Random forest (RF) Trees 100–1500 200 73.52 
 Minimum sample  

 split 
2–50 04 77.94 
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feature space rather than its statistical val-
ues9. As geometric methods are specific to 
a particular area/data, they can perform 
well in the regions where the spectral sig-
natures have a limited variability. On the 
other hand, the results of classification 
from ANN are more generalized for differ-
ent areas with similar lithology. For ANN 
to classify a problem with such a high di-
mensionality of data, a large training dataset 
is required since the mathematical rela-
tionship for each class is deduced based on 
its spectral features. Depending on the data-
set available, there is a bias to specific 
classes since they are present in large num-
bers, whereas some classes have few train-
ing pixels. XGBoost and RF, the tree-based 
algorithms, seem over-fitting due to the 
large number of classes causing high varia-
bility. XGBoost, however, performs better 
than RF as its architecture uses extreme 
gradient boosting, and learning is much 
better than RF.  
 The PRISMA sensor has provided an 
opportunity to characterize and analyse the 
lithology of the study region at a spatial 
resolution of 30 m/pixel in the VNIR range 
(400–2500 nm) at signal-to-noise ratio 200 
(VNIR)-100 (SWIR), providing very high-
resolution and high-quality data for the 
Nidar region. Given the complex mineralo-
gy of the target rock assemblages in the 
present study area, hyperspectral remote 
sensing is the best approach for lithologi-

cal characterization because of its ability to 
characterize and discriminate the lithounits 
based on spectral signatures of the dominant 
mineral phases present. When combined 
with ML-based classifiers, this approach 
contributes significantly to characterizing 
and evaluating the dominant lithology of 
the study region at the early stage of min-
eral exploration in a time- and cost-
effective manner. Given the current status 
of limited work on the exploration of ophi-
olites using high-resolution hyperspectral 
remote sensing, ML-based classification 
could be an effective tool for exploring new 
deposits of ophiolites. 
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