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In India, cotton yield estimates are done using crop cut-
ting experiments (CCEs) conducted within the frame-
work of the general crop estimation surveys (GCES) 
methodology. In recent times, for obtaining reliable esti-
mates at levels lower than the district, the number of 
CCEs has increased in comparison to the existing set-up 
of GCES. This puts an additional financial burden on 
Government agencies. There is a possibility of reducing 
the number of CCEs under the GCES methodology and 
predicting the remaining CCE points using an appropri-
ate spatial prediction model. In this article, the predictive 
performance of different spatial models has been com-
pared. Furthermore, district-level estimate of average 
productivity of cotton has been determined using the 
geographically weighted regression (GWR) technique 
and the results compared with those obtained using the 
traditional GCES methodology. The proposed spatial es-
timator of the average yield of cotton obtained using 
the GWR approach is more efficient and the results are 
comparable with the estimates obtained using the GCES 
methodology. The developed methodology can be utilized 
to reduce the number of CCEs and capture the spatial 
non-stationarity present in the cotton crop yield. 
 
Keywords: Cotton yield, crop cutting experiments, district 
level, geographically weighted regression, spatial non-sta-
tionarity. 
 
COTTON holds significant global importance as a major 
crop for fibre production. It is cultivated in over 80 countries 
across tropical and subtropical regions worldwide. Cotton 
belongs to the genus Gossypium, producing spinnable fibres 
in its seed coat. The cotton crop is harvested through mul-
tiple pickings, with the overall number of pickings varying 
with location. The range of pickings can vary from 2 to 3 
to as many as 10 depending on the region. Cotton seeds 
contain two distinct types of fibre. The first type is long 
fibres called lint, which can be separated from the seed by 
the ginning process. The second type is short fibres referred 
to as linters, which remain attached to the seed even after it 

has been ginned. India is the world’s second-largest producer 
of cotton after China, accounting for nearly 22% of the 
global production and with the highest area under cotton culti-
vation which is almost 37% of the total (12.35 mha) area. 
 The current methodology utilized for generating official 
estimates of cotton production in the cotton-growing states of 
India has been developed by ICAR-Indian Agricultural 
Statistics Research Institute (ICAR-IASRI), New Delhi. 
Estimates of total yield of cotton are made through the 
scientifically designed crop cutting experiments (CCEs) 
carried out within the framework of the general crop estima-
tion surveys (GCES) methodology1. In India, the sampling 
design employed for CCEs under the GCES methodology 
in different states follows a stratified, three-stage, random 
sampling approach. The strata are defined as mandals/ 
taluks/revenue inspector circles/blocks/tehsils; the first 
stage units (FSUs) of sampling are villages within the stra-
tum, the second stage units (SSUs) are survey numbers/ 
fields within each chosen village and the ultimate stage 
units of sampling are experimental plots of a particular size 
across the selected fields. In India, the GCES framework 
is implemented to estimate cotton crop productivity or 
yield at a broader level, specifically at the state and district 
levels. Every year, approximately 16 lakh CCEs are carried 
out under GCES, but these are insufficient to generate 
precise estimates lower than the district level. To obtain 
reliable estimates lower than district level, the number of 
CCEs must be increased in comparison to the existing 
number. It is further increased extensively for crop insurance 
purposes under the Central Government scheme, Pradhan 
Mantri Fasal Bima Yojana (PMFBY). This places an addi-
tional financial burden on the Government agency and leads 
to a notable increase in non-sampling errors, which can 
adversely impact the accuracy and reliability of the pro-
duction statistics. Crop productivity is frequently spatially 
correlated, exhibiting spatial non-stationarity association 
with the auxiliary variables. This spatial non-stationarity 
in crop yield can be utilized to estimate crop yield with 
less number of CCEs. Geospatial technology has become 
increasingly important in crop yield estimation and map-
ping in recent years. There is a possibility of reducing the 
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number of CCEs conducted under the GCES methodology 
for estimating the average productivity of cotton by perform-
ing less number of CCEs and predicting the remaining CCE 
data points needed to be employed in the GCES methodo-
logy using different spatial prediction approaches. Geogra-
phically weighted regression (GWR) model is a well-known 
spatial prediction model which deals with spatial non-
stationarity. The aim of the present study is to develop an 
improved estimator of crop yield using the GWR model 
with reduced number of CCEs. Also, to compare the GWR 
model with other popular mathematical/statistical/spatial/ 
machine learning models like multiple linear regression 
(MLR), inverse distance weighting (IDW), Gaussian process 
regression (GPR), ordinary kriging (OK) and random forest 
(RF) for estimating the remaining CCE data points at non-
sampled locations and identify the best spatial prediction 
model under the condition of spatial non-stationarity. As a 
result, an effort has been made to limit the number of CCEs 
used in the GCES methodology to estimate the average 
productivity of cotton and the productivity of the remaining 
CCE data points is estimated using appropriate spatial models. 

Materials and methods 

A brief introduction to the study area and cotton CCE survey 
data utilized in this study is given in the subsequent sec-
tions. These also include a spatial estimator of the average 
productivity of cotton utilizing a spatial methodology and 
various spatial models that are compared. 

Study area and survey data used 

The GCES dataset of cotton CCEs conducted in the Amra-
vati district, Maharashtra, India, during the period 2012–
13 is accessible at the Division of Sample Surveys, ICAR-
IASRI, New Delhi, under the project entitled ‘Study to 
develop an alternative methodology for estimation of cotton 
production’. This dataset was utilized in the present study. 
Since this dataset is not geo-tagged, the geo-spatial loca-
tions of CCE villages were derived using a GIS map of 
Amravati district, Maharashtra (Figure 1). For the purpose 
this study, CCE village yield (an average of two CCE plots 
per village) was then associated with the village locations 
obtained from the GIS map of the district. We have consid-
ered the available CCEs data of 316 villages of Amravati 
district, Maharashtra2. Therefore, in this study, it has been 
assumed that the complete dataset of cotton crop CCEs of 
the district comprises a total of 316 CCE village yields. In 
case of CCEs for cotton in Maharashtra, the plot size used 
is 20 m × 10 m. Cotton crop is typically harvested through 
multiple pickings. In general, 2–8 pickings are performed. 
In this study, we have used the yield data of individual 
pickings as auxiliary variables, since yield at some signif-
icant pickings has a high correlation with the total yield of 
the CCE plots across all pickings. Furthermore, too many 

covariates make the model unnecessarily complex. There-
fore, it is important to choose a few important auxiliary 
variables (i.e. pickings) having a high correlation with the 
study variable (i.e. total yield), and remove those that are 
not significant from the final model. Therefore, we have 
proposed a stepwise variable selection procedure to select 
a few important auxiliary variables under the model-based 
estimation framework. 

Existing methodology used to estimate cotton  
average productivity 

The present estimation approach implemented within the 
GCES methodology to estimate the average productivity 
of cotton in Amravati district, Maharashtra, is outlined as 
follows3. 
 The average productivity of cotton crop is estimated at 
stratum level by calculating the simple arithmetic mean of 
plot yields (net) within that particular stratum. Let yhij de-
note yield (kg/plot) of the jth plot in the ith village of the 
hth stratum; nhi indicates the total count of CCEs carried 
out in the ith village of the hth stratum; mh indicates the 
sampled village count in which CCEs are carried out in 
the hth stratum; nh indicates the count of CCEs carried out 
in the hth stratum; L denote the stratum count within a 
 
 

 
 
Figure 1. Spatial distribution of CCE plots selected under the GCES 
methodology for estimating average yield of cotton crop in Amaravati 
district, Maharashtra, India, for the year 2012–13. 
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particular district; ah is the cotton crop area in the hth stra-
tum; d is the driage ratio; f is the transformation factor 
used to transform the yield of green produce per plot into 
its corresponding dry saleable produce per hectare.  
 The estimate of cotton average productivity for the hth 
stratum is derived as 
 

 
1 1

1 .
h him n

h hij
i jh

y y
n = =

= ∑∑  

 
Average productivity per hectare at the district level is de-
termined by the equation 
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is the mean square within the villages. 
 An estimate of percentage standard error of Ŷ  is done 
as follows 
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Different models under consideration  

The multiple linear regression (MLR) model is used to de-
scribe the association that exists between a dependent varia-

ble y and a set of independent variables xi1, xi2, …, xip. The 
MLR model can be expressed as 
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where β0 is the intercept term, β1, …, βp denote model para-
meters associated with the independent variables; p and n 
represent independent variables count and size of the 
sample respectively, and ∈i represents random error of the 
ith sample with mean ‘0’ and constant variance σ 2. The 
MLR model parameters are estimated by ordinary least 
squares (OLS) method and can be expressed as 
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Brunsdon et al.4,5 introduced the GWR model as a solution 
for addressing the issue of spatial non-stationarity. This is 
a local spatial modelling technique that focuses on model-
ling spatially varying relationships. Unlike the GWR model6, 
the MLR model assumes a constant relationship between 
variables throughout the study area and does not take into 
account the potential impact of geographical locations. 
Consequently, to address the problem of spatial non-sta-
tionarity, the MLR model is expanded with the GWR model 
to provide localized estimations. Mathematically, the GWR 
model is defined as follows 
 

 0
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( ) ( ) ; 1, 2,..., ; 1, 2,..., ,
p
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where ki denotes the coordinate point of the ith unit in 
space, β0(ki) the constant coefficient and βl(ki) is the coef-
ficient of the lth independent variable at location ki. These 
coefficients vary spatially and hence can capture the local 
effects. The GWR model parameters are estimated using 
weighted least squares (WLS) method and can be expressed 
as follows 
 
 1ˆ( ) ( ( ) ) ( ) ,T T

i i ik k k−=β X W X X W y   (4) 
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where W(ki) denotes the spatial diagonal weight matrix of 
order (n × n). The diagonal elements wi1, wi2, …, win rep-
resent the spatial weights associated with each of the n ob-
servations for location ki, and each element that is off-
diagonal is zero. The estimation of geographical weights 
relies on a certain spatial weighting function known as a 
kernel function. In the present study, we have used several 
spatial weight functions or kernels which are defined below. 
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where di(kj) measures the spatial distance between location i 
and j and b represents the kernel bandwidth, which is the 
distance beyond which weight of the observations is assigned 
a value of zero. 
 The predicted value at the ith sampled location can be 
represented by eq. (9) as 
 
 1ˆˆ ( ) ( ( ) ) ( ) ,T T T T
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where xi denotes vectors of the ith row of matrix X. 
 Spatial prediction, in a broad sense, encompasses pre-
diction methods that take into account spatial dependence. 
Unlike classical prediction methods that do not incorporate 
spatial models, spatial statistical prediction relies on spa-
tial models to make predictions. Ordinary kriging (OK) is 
a popular geostatistical spatial interpolation method7. Using 
available sampled data points, spatial prediction seeks to 
predict the variable values at unknown locations. However, it 
is highly sensitive if the variogram model is not well speci-
fied and a small sample size will result in low interpola-
tion accuracy. The primary goal of OK is to predict the 
values of a random variable Z at several unknown points, say 
Zi, for the random variable Z(ki), i = 1, 2, …, n at nearby 
locations k1, k2, …, kn. The predicted value of Z at an un-
known location say k0, denoted as 0

ˆ ( ),Z k  can be obtained 
using the equation 
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where 0

ˆ ( )Z k  indicates the predicted value of Z at location 
k0, and λi represents weights corresponding to the observed 
value of Z at location i subject to the condition 1 1.n

iλ∑ =  
The process of determining of weights is carried out in a 
manner that minimizes the estimated error variance. Alt-
hough OK minimizes the prediction error variance, inter-
polation in this case is based solely on sample points of 
the study variable and without take into consideration 
supplementary data. As a result, OK requires dense sam-
ple data for interpolation, and is constrained by the density 
and quantity of the samples8. 
 Donald9 introduced the inverse distance weighting 
(IDW) technique. This method is utilized in spatial inter-
polation to assign values to spatial locations that are not 
known by considering the values of known sample locations. 
The IDW interpolation method operates under the explicit 
assumption that objects or points in close proximity exhibit 
greater similarity compared to those located farther apart. 
Using the IDW method, a predicted value can be obtained 
for any unsampled point by considering the sampled values 
around the prediction point. The sampled values nearer to 
the prediction point exert a greater impact on the final 
predicted value compared to those located further away. 
 According to the IDW method, each sampled point has 
a localized influence that gradually diminishes with increas-
ing distance. This method assigns greater weights to points 
in close proximity to the prediction location, while reducing 
those for points farther away. This weighting scheme, where 
the weights are inversely proportional to distance, gives IDW 
its name. Biswas et al.10 proposed a spatial estimation ap-
proach for finite population parameters using the IDW 
technique. This method calculates the study variable values 
at each unknown point using the expression 
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where Zi denotes the observed value at the sampled location 
i, ˆ

jZ  an interpolated value of Z at an unknown point j, dij 
distance between location i and j, p the inverse distance 
weighting power and n is the number of sampled locations. 
The rate at which weights decrease with increasing distance 
depends on the magnitude of p.  
 When there is a complex relationship between a group 
of auxiliary variables and a response variable, we frequently 
employ nonlinear approaches to model this association. 
Random forest (RF) is a machine learning algorithm that 
is built upon the concepts of decision trees and bagging11. 
This data-driven statistical method combines a number of 
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classification and regression trees (CARTs)12. Breiman11 
hypothesized that the generalization of the model would 
be enhanced by aggregating the independent CARTs pre-
dictions and including bagging into the strategy, which is 
frequently the case. In RF, predictions are generated by 
aggregating the estimates from multiple decision trees using 
bootstrap samples (bagging). This ensemble approach helps 
improve the overall accuracy and robustness of the pre-
dictions13,14. The RF model-based prediction can be expres-
sed as 
 

 0 1 0 2 0 0
ˆ ( ) ( ( ), ( ), ..., ( )),mZ k f x k x k x k=   (12) 

 
where 0

ˆ ( )Z k  represents predicted value of the response 
variable at prediction location k0, xi(k0) (i = 1, …, m) are 
the covariates located at position k0 and m is the number 
of covariates. 
 The Gaussian processes regression (GPR) model is a pop-
ular non-parametric machine learning approach utilized 
frequently for problems involving classification and re-
gression, because of its adaptability and built-in measures 
of prediction uncertainty15. The GPR model depicts a distri-
bution across functions, where a suitable kernel function 
determines the smoothness of these functions16. In this 
model, a prior on the function space is specified first; then 
the posterior using the training data is determined, and finally 
the predictive posterior distribution on the points of interest 
is computed. A Gaussian process (GP) is fully described 
by its mean function m(z) and covariance functions (kernel) 
k(z, z′) as given below. 
 
 f (z) ~ GP(m(z), k(z, z′)), (13) 
 
 m(z) = Ef (z), k(z, z′) = E(( f(z) – m(z))( f (z′) – m(z′))), 
 
where z ∈  t represents a vector with t parameters as in-
put17 and E is mathematical expectation or expected value 
of the random variable. Equation (13) indicates that the 
function f (z) has a GP distribution with a mean function 
m(z) and covariance function k(z, z′). Considering the train-
ing data Z = (z1, z2, …, zn)T ∈ n × t, y = (y1, y2, …, yn)T ∈ 


n, where n denotes the size of observed training points 
and (.)T indicates transpose, an expression for the predic-
tive distribution at an unknown point z* is as follows 
 
 2

* *ˆ ˆ* | , , * ~ ( , ),f µ σZ y z   (14) 
 
 �̂�(z*) = m(z*) + K(z*, Z)(K(Z, Z) + σ 2I)–1(y – m(z)), 
 
 𝜎�2(z*) = K(z*, z*) – K(z*, Z)(K(Z, Z) + σ 2I)–1K(Z, z*), 
 
where K(Z, Z) is a covariance kernel matrix of the form 
Kij = k(zi, zj), i, j = 1, …, n, whose entries correspond to 
the covariance function evaluated during observations. In 

the present study radial basis function (RBF) has been uti-
lized as the kernel function. 

Comparing the performance of GWR with other  
spatial prediction models 

To determine the usefulness of the GWR model for spatial 
mapping of yield rates of cotton crop at the non-sampled 
location under the condition of spatial non-stationarity, its 
performance was compared with the MLR, RF, GPR, OK 
and IDW models. Hence, for comparing the performance of 
GWR with other spatial prediction models, all the CCEs 
village yields used in the GCES methodology were consi-
dered as the study population, and a subset of units was 
randomly sampled from it. We had selected in total two 
random samples each of size 64(20%) and 94(30%) out of 
316 CCEs villages. With the help of these sampled data 
points, the remaining non-sampled data points (i.e. non-
sampled locations) under the GCES methodology were 
predicted employing different models, i.e. GWR, OK, RF, 
GPR, MLR and IDW. Using the GWR model, estimates of 
intercept and slope parameters of non-sampled locations 
were done using eq. (4). Now, it is possible to estimate the 
cotton average productivity and percentage standard error 
by combining the observed sampled dataset and predicted 
dataset of all CCE villages under the GCES methodology. 
Here, our objective is to find a suitable spatial prediction 
model that has more predictive power than the other models 
and can address the spatial non-stationarity problem effec-
tively.  
 Now, without disturbing the GCES set-up as discussed 
earlier, the estimate of cotton average productivity for the 
hth stratum using the proposed spatial approach can be 
done as follows 
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where the first summation is the total of sampled CCE vil-
lage yield, whereas the second summation is the total of 
non-sampled CCE village yield predicted using a suitable 
spatial prediction model and nh is the number of CCEs in 
the hth stratum.  
 Hence, a spatial estimator of the cotton average produc-
tivity/yield at district level is given by 
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Model evaluation criteria 

The model performance was assessed based on the following 
criteria: mean squared error (MSE), mean absolute percentage 
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error (MAPE), root mean square error (RMSE) and mean 
absolute error (MAE). We have also checked the R2 and 
Akaike information criterion (AIC) values of the GWR and 
MLR models. The performance metrices formula are given 
below 
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where n is the sample size, ˆiy  and y the predicted and ob-
served yield respectively, of the sample at location i, y  
the average value of the observed yield, tr(S) the trace of 
the hat matrix S of the observed variable y on the estimated 
variable ŷ  and σ̂  denotes the estimated value for the stan-
dard deviation of error terms. AIC indicates model accu-
racy, the regression model with the least AIC value is the 
best. Coefficient of determination (R2) was utilized to 
evaluate the goodness of fit of the model. A higher value 
of R2 indicates a better fit. On the other hand, metrices like 
MAE, MSE, RMSE and MAPE were used to measure the 
accuracy of model predictions; a lower value for these met-
rics indicates that the model makes more accurate predic-
tions18. 

Design-based simulation study 

A design-based simulation was performed to estimate the 
cotton average productivity along with percentage standard 
error at the district level using a relatively lesser number 
of CCE villages than that used in the GCES methodology, 
employing the GWR approach utilizing real cotton yield 
data of Amravati district, Maharashtra for the period 2012–
13. In general, 2–8 pickings were carried out during har-
vesting of cotton crop and the total yield for all the pickings 

was considered as the study variable. In this study, we 
have used the yield at fourth picking as an auxiliary variable, 
since it had the highest correlation with the study variable 
(i.e. total yield). Furthermore, too many covariates make 
the model unnecessarily complex. Therefore, we have pro-
posed a stepwise variable selection procedure to select a 
few important auxiliary variables under the model-based 
framework. The tehsils of Amravati district, Maharashtra, 
were considered as strata and the chosen 316 CCE villages 
of the district were considered as a population. A sample 
of size 64 and 94 (20% and 30% respectively, of the com-
plete 316 CCE villages) was selected using the simple ran-
dom sampling without replacement (SRSWOR) scheme. 
With the help of these sampled data points, the average 
yield of the remaining non-sampled CCE villages (i.e. 
non-sampled locations) under the GCES methodology was 
predicted using the GWR approach as it has been identified 
as the best spatial prediction model, and has achieved bet-
ter model fitting and prediction accuracy. By combining 
the observed sampled dataset and predicted dataset, the total 
number of CCE data points required to implement GCES 
was obtained. Estimates of average productivity of cotton 
using the proposed spatial estimator were obtained using 
the procedure discussed earlier. We implemented Monte 
Carlo simulation to study the sampling distribution of the 
spatial estimator using the GWR model. Thus, 1000 inde-
pendent SRSWOR samples of a given sample size were 
selected and from each sample, estimates of average pro-
ductivity of cotton along with %SE were done using both 
traditional GCES methodology and the proposed spatial 
estimator as given in eq. (1) and eq. (16) respectively. Since 
Monte Carlo simulation was performed, %SE of the pro-
posed spatial estimator was determined using the empiri-
cal variance the estimator. 

Results and discussion 

In this study, we have compared six different spatial and 
machine learning models, i.e. GWR, RF, GPR, MLR, OK 
and IDW in terms of their prediction accuracy. We have 
also examined whether the GWR model provides an accurate 
description of the dataset compared to the MLR model. 
Figure 2 represents the spatial distribution of CCE plots 
selected under the GCES methodology for all the non-
sampled locations. 
 Residual sum of square (RSS), R2 and AIC values were 
used to evaluate the effectiveness of the GWR and MLR 
models. Table 1 shows that, compared to the global re-
gression model (MLR), the local regression model (GWR) 
performs well, because the R2 value is relatively greater in 
the latter compared to the former model. The MLR model 
explains only 88.1% (R2) variability of the study variable 
Y, which is increased by 96.2% (R2) if the GWR model is 
used. In terms of model accuracy, our findings indicate 
that the GWR model outperforms the MLR model because 
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AIC values are reduced from 431.96 (MLR model) to 
336.67 (GWR model). RSS in the local regression model 
(GWR: 111.42) is also lower than that in the global re-
gression model (OLS: 375.01). 
 The F-test was performed to determine whether the GWR 
model shows a statistically significant improvement over  
 
 

 
 
Figure 2. Distribution of CCE villages for all the non-sampled loca-
tions selected under the GCES methodology in Amravati district, Maha-
rashtra for the year 2012–13. 
 
 

 
 

Figure 3. Boxplot of residuals of MLR and GWR models. 
 
 

Table 1. Comparing the GWR and MLR models based  
  on different performance metrics 

Model performance statistics MLR GWR 
 

R2 0.881 0.962 
AIC 431.96 336.67 
Residual sum of squares 375.01 111.42 

 
 

Table 2. Goodness of fit test for  
  the GWR model 

F-statistic  P-value 
 

0.6399 0.000426* 
*Significant at α = 0.01.  

the MLR model. A smaller value (<1) of F-statistic indi-
cates that the GWR model exhibits greater goodness-of-fit  
compared to the MLR model, i.e. GWR model describes 
the cotton crop yield data significantly better than the MLR 
model19. Table 2 shows that performance of the GWR 
model is better than that of the MLR model as the F-sta-
tistic is significant. 
 Figure 3 shows that the MLR model has comparatively 
higher residual values than the GWR model. This is due to 
the presence of spatial variability in the processes being 
modelled, which the MLR model cannot handle. Figure 4 
shows the spatial mapping of residuals at the sampled  
locations obtained by fitting the MLR and GWR models 
on the cotton crop yield data of Amravati district, Maha-
rashtra. 
 As all the GWR model parameters (i.e. regression coef-
ficients) are estimated for each geographical location in 
the data, thus the estimates vary across locations. Figure 5 
represents the spatial distribution of the estimated GWR 
model parameters across all the non-sampled locations 
(non-sampled CCE data points). Figure 5 reveals that esti-
mates of the intercept and slope parameters (pickings) of 
the GWR model vary considerably across the study area. 
This suggests that both the model parameters exhibit spa-
tial non-stationarity for cotton crop yield data. 
 Figure 6 is a scatterplot illustrating the association bet-
ween the actual and predicted yields of cotton crop for the 
six models. The data points in each scatterplot generally 
show a positive and linear pattern, although it differs 
among the six prediction models. 
 The best association was found in the GWR model, follo-
wed by the RF model. However, the data points in OK and 
IDW models were more scattered around the diagonal, in 
contrast to the other four models. The data points in the 
GPR scatterplot also exhibit a positive and linear pattern. 
This indicates that except the GWR model, the other models 
have limitations in capturing the spatial non-stationarity 
relationship present in the cotton crop yield data. 
 The spatial map shown in Figure 7 presents the spatial 
distribution of predicted yield of cotton crop at all the non-
sampled CCE points obtained by fitting different models 
(i.e. GWR, MLR, RF, OK, IDW and GPR) at the sampled 
CCE villages. Figure 8 illustrates the process of performing 
regressions using the Gaussian process model. In the figure, 
the black dots represent the sampled data points. Based on 
these sampled data points, multiple possible posterior 
functions were generated20. The mean function, represented 
by the black solid line in Figure 8, was derived from the 
probability distribution of these functions, and predictions 
were made at new data points. 
 The GWR model was compared with the five other mod-
els, i.e. MLR, RF, OK, IDW and GPR based on different 
performance metrices (Table 3). GWR model had the 
most satisfactory performance compared to other models 
with respect to all the statistical indicators. From Table 3, it 
can be observed that among the four spatial weight functions 
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Figure 4. Spatial mapping of residuals obtained by fitting (a) MLR and (b) GWR models on cotton crop yield data of Amaravati district, Maharashtra. 

 
 

 
 
Figure 5. Spatial mapping of the estimated (a) intercept and (b) slope (picking) parameters of the GWR model for all the non-sampled CCE village 
locations of cotton crop in Amravati district, Maharashtra. 
 
 

Table 3. Comparison of the performances of GWR, RF, MLR, GPR, OK and IDW models based   
  on different statistical indicators 

Sample size Model MSE RMSE MAE MAPE 
 

64 (20%) GWR (exponential) 4.931 2.220 1.629 5.340 
 GWR (Gaussian) 5.136 2.266 1.660 5.516 
 GWR (bisquare) 5.091 2.256 1.644 5.438 
 GWR (tricube) 5.107 2.260 1.648 5.457 
 RF 28.552 5.343 2.943 9.735 
 MLR 24.373 4.936 3.952 13.602 
 GPR 44.589 6.677 4.697 17.575 
 OK 151.80 12.321 8.933 35.671 
 IDW 153.22 12.378 9.033 36.928 
94 (30%) GWR (exponential) 4.904 2.214 1.616 5.372 
 GWR (Gaussian) 5.078 2.253 1.651 5.558 
 GWR (bisquare) 5.090 2.256 1.633 5.472 
 GWR (tricube) 5.119 2.262 1.635 5.484 
 RF 10.697 3.270 2.330 8.878 
 MLR 21.280 4.613 3.871 13.948 
 GPR 34.891 5.906 4.383 17.404 
 OK 145.41 12.058 9.212 37.071 
 IDW 141.85 11.910 9.094 38.982 

 
 
(kernels), the GWR model with exponential kernel func-
tion exhibits better fitness performance according to 
RMSE value (2.22), which is considerably smaller than 

those obtained from other three kernel functions. In addition, 
MSE, MAE and MAPE values of the GWR model are 
substantially lower than those obtained from the other five 
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Figure 6. Scatterplot of actual versus predicted yield of cotton crop based on (a) GWR, (b) MLR, (c) OK, (d) IDW, (e) RF and ( f ) GPR models at 
all the non-sampled locations. 
 
 
models21. We can thus conclude that the predictive ability 
of the GWR model is higher than the other five models, 
and the lowest prediction can be seen in the case of OK 
and IDW models. The GWR model captures the spatial 
non-stationarity relationship present in cotton yield data 
efficiently than the other five models. 
 The average productivity of cotton was determined using 
the GCES methodology based on total number of CCE 
villages (316) as well as using the same methodology 

based on samples (64 and 94) of total GCES villages, re-
sulting in a standard error of less than 3%, indicating high 
reliability (Table 4). The average productivity of cotton 
was also derived using a reduced number of samples of CCE 
villages under the GWR approach. Table 4 shows that the 
estimates of average productivity derived using the GWR 
approach have standard errors of less than 1%, making 
them reliable and nearly comparable to those derived us-
ing the GCES methodology. Thus, we may assert that there 
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Figure 7. Spatial mapping of predicted yield of cotton crop at the non-sampled CCE points using (a) GWR, (b) MLR, (c) OK, (d) IDW, (e) RF and 
( f ) GPR models. 
 
 
is a possibility of reducing the number of CCEs in the 
GCES methodology and predict the remaining CCE points 
using the GWR model. This will give an estimate of average 
productivity or yield of cotton with a higher level of pre-
cision. 

Conclusion 

In this study, we have compared the predictive performance 
of different spatial models for cotton crop yield mapping 
under the condition of spatial non-stationarity. The GWR 
model efficiently addresses the spatial non-stationarity 
problem in identifying the association among auxiliary 

variables and yield. To evaluate the efficacy of the GWR 
model, a comparison was made with the well-established 
MLR model and four other commonly used spatial and 
machine learning models, namely RF, GPR, OK and IDW. 
The findings reveal that the GWR model performs better 
compared to the other models. The analysis result based 
on the cotton dataset reveals that the GWR model with expo-
nential kernel function outperforms the others in terms 
model-fitting and prediction accuracy. The GWR model 
shows substantial improvement in terms of all the statistical 
indicators considered in this study compared to other 
models, and is capable of accurately capturing the non-
stationarity relationship present in the cotton crop yield 
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Figure 8. Schematic diagram of the GPR model. The sampled data points are 
denoted by black dots and the mean function represented by black solid line esti-
mated by the sampled data points. 

 
 

Table 4. Comparison of estimates of average yield of cotton using traditional GCES 
methodology and the proposed spatial estimator using GWR approach based on complete  
  and sampled CCE datasets 

No. of sampled villages (% of the complete datatset) Average yield (kg/ha) % SE 
 

Traditional GCES methodology   
 316 (100) 541.76 0.7126 
 64 (20) 562.85 2.7669 
 94 (30) 534.90 1.5348 
Proposed spatial estimator using GWR approach   
 Exponential kernel   
  64 (20) 523.63 0.8235 
  94 (30) 524.15 0.6461 

 
 
 
data. Furthermore, we have obtained a spatial estimator of 
the average productivity of cotton along with %SE at the 
district level employing the GWR approach and compared 
the result with that obtained using the GCES methodology. 
The estimate derived using the GWR approach was highly 
efficient, reliable and almost comparable to that derived 
using the GCES methodology. We have also shown that 
there is a possibility of reducing the number of CCEs used 
in the GCES methodology and then predicting the rest of 
the CCEs using an appropriate spatial prediction model. 
The proposed methodology using the GWR approach results 
in significant reduction in the number of CCEs for estima-
tion of cotton yield. It will significantly reduce survey 
costs and is more operationally convenient than the GCES 
method. If the proposed methodology is effective for other 
crops, it can be utilized for more reliable and efficient esti-
mation of crop yield. 

Conflicts of interest: The authors declare that there is no 
conflict of interest. 
 
 

1. Ahmad, T., Sud, U. C., Rai, A. and Sahoo, P. M., An alternative 
sampling methodology for estimation of cotton yield using double 
sampling approach. J. Indian Soc. Agric. Stat., 2020, 74(3), 217–226. 

2. Moury, P. K., Estimation of finite population total using robust geo-
graphically weighted regression approach. Ph.D. thesis, ICAR-
IARI, New Delhi, 2020. 

3. Ahmad, T., Bhatia, V. K., Sud, U. C., Rai, A. and Sahoo, P. M., 
Study to develop an alternative methodology for estimation of cot-
ton production. Project Report, ICAR-Indian Agricultural Statistics 
Research Institute, New Delhi, 2013. 

4. Brunsdon, C., Fotheringham, A. S. and Charlton, M. E., Geographi-
cally weighted regression: a method for exploring spatial non-
stationarity. Geogra. Anal., 1996, 28, 281–298.  

5. Brunsdon, C., Fotheringham, S. and Charlton, M., Geographically 
weighted regression-modelling spatial non-stationary. Statistician, 
1998, 47(3), 431–443. 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 125, NO. 5, 10 SEPTEMBER 2023 529 

6. Fotheringham, A. S., Brunsdon, C. and Charlton, M., Geographically 
Weighted Regression: The Analysis of Spatially Varying Relation-
ships, John Wiley, England, UK, 2002, pp. 52–64. 

7. Cressie, N. A. C., Statistics for Spatial Data, Wiley, New York, 
USA, 1991, pp. 105–143. 

8. Pang, S., Li, T., Wang, Y., Yu, H. and Li, X., Spatial interpolation 
and sample size optimization for soil copper (Cu) investigation in 
cropland soil at county scale using cokriging. Agric. Sci. China, 
2009, 8(11), 1369–1377. 

9. Donald, S., A two-dimensional interpolation function for irregularly-
spaced data. In Proceedings of the 1968 Association for Computing 
Machinery National Conference, Association for Computing Ma-
chinery, New York, United States, 1968, pp. 517–524. 

10. Biswas, A., Rai, A., Ahmad, T. and Sahoo, P. M., Spatial estimation 
and rescaled spatial bootstrap approach for finite population. Com-
mun. Stat. – Theory Method., 2017, 46(1), 373–388.  

11. Breiman, L., Bagging predictors. Mach. Learn., 1996, 24, 123–140. 
12. Breiman, L., Random forests. Mach. Learn., 2001, 45, 5–32. 
13. Hengl, T. et al., Random forest as a generic framework for predic-

tive modeling of spatial and spatio-temporal variables. PeerJ, 2018, 
6, 1–49; doi:10.7717/peerj.5518. 

14. Sekulić, A., Kilibarda, M., Heuvelink, G. B. M., Nikolić, M. and 
Bajat, B., Random forest spatial interpolation. Remote Sensing, 
2020, 12, 1687. 

15. Rasmussen, C. E. and Williams, C. K. I., Gaussian Processes for 
Machine Learning, MIT Press, Cambridge, Massachusetts, USA, 
2006. 

16. Erickson, C. B., Ankenman, B. E. and Sanchez, S. M., Comparison 
of Gaussian process modeling software. Eur. J. Oper. Res., 2018, 
266(1), 179–192. 

17. Nikitin, A. et al., Bayesian optimization for seed germination. 
Plant Method., 2019, 15, 43. 

18. Feng, L., Wang, Y., Zhang, Z. and Du, Q., Geographically and 
temporally weighted neural network for winter wheat yield predic-
tion. Remote Sensing Environ., 2021, 262, 1–15.  

19. Leung, Y., Mei, C. L. and Zhang, W. X., Statistical tests for spatial 
non-stationarity based on the geographically weighted regression 
model. Environ. Plann. A, 2000, 32(1), 9–32.  

20. Wang, J., An intuitive tutorial to Gaussian processes regression. 
2020, arXiv:2009.10862. 

21. Du, Z., Wang, Z., Wu, S., Zhang, F. and Liu, R., Geographically 
neural network weighted regression for the accurate estimation of 
spatial non-stationarity. Int. J. Geogr. Inf. Sci., 2020, 34(7), 1353–
1377. 

 
ACKNOWLEDGEMENTS. We thank the reviewer for providing val-
uable suggestions that have improved the quality of this manuscript. 
First author thanks ICAR-Indian Agricultural Statistics Research Insti-
tute, New Delhi for providing the real survey data on CCE, laboratory 
facilities and overall support during his Ph.D. programme. 
 
Received 9 December 2022; revised accepted 10 April 2023 
 
doi: 10.18520/cs/v125/i5/518-529 

 
 
 
 
 
 
 
 
 
 
 
 
 


	Materials and methods
	Study area and survey data used
	Existing methodology used to estimate cotton  average productivity
	Different models under consideration
	Comparing the performance of GWR with other  spatial prediction models
	Model evaluation criteria
	Design-based simulation study

	Results and discussion
	Conclusion

