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In this study, we report a high concentration of cobalt 
(Co) in the rocks of Ajabgarh Group of Delhi Super-
group from Nasibpur and the surrounding areas of 
Southwest Haryana, India, which forms a part of the 
North Delhi Fold Belt (NDFB). Metasedimentary and 
magmatic phases of the rocks contained high cobalt 
content ranging from 166 to 3657 ppm. The maximum 
concentration of cobalt (2371–3657 ppm) was observed 
in quartzite samples from the Nasibpur area. Cobalt 
enrichment in these rocks can be attributed to magmatic–
hydrothermal and metamorphic fluids in relation to 
geological features such as shear and foliation zones, 
which provide a high fluid/rock ratio. Overall, the appli-
cations of cobalt are numerous and crucial. The present 
study warrants further extensive exploration efforts in 
order to assess the abundance of this valuable metal, as 
the global cobalt market is increasing in response to a 
low-carbon economy. 
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COBALT (Co) can be found in diverse geological settings 
such as intracratonic structurally controlled replacement 
deposits, which may be hydrothermal or magmatic in origin 
(also known as iron oxide–Cu–Au–Ag–U–REE–Co–Ni)1,2, 
metasediment-hosted Co–Cu–Au, stratiform sediment-hosted 
Cu–Co (SSHC)3, black shale-hosted4, Ni–Co laterite5,6, 
polymetallic Co-rich veins7–9, and skarn and replacement 
deposits10. Among these, SSHC magmatic Ni–Cu–Co (plati-
num group element (PGE)) and Ni–Co laterite deposits host 
85% of the global cobalt resources. In sedimentary rocks, 
siliciclastic and carbonates such as dolomitic limestone 
and dolomite-rich shale host cobalt deposits in Zambia 
and the Democratic Republic of Congo (DRC) in Central 
Africa, which has the world’s highest concentration of 
copper and cobalt11,12. Globally, these are located in the 
Bou–Azzer deposit (Morocco), Idaho cobalt belt, Blackbird 
district (USA), Cobalt Gowganda (Canada) and Olympic 
Dam (Australia). Table 1 presents the cobalt concentration 
in some of the major deposits across the world. In the pre-
sent study, many samples contain cobalt concentrations 
higher than the minimum grade (300 ppm) or cut-off grade 
(200 ppm) for sulphide or arsenide commercial exploitation. 

Due to its unique properties like high melting point 
(1495°C), highest known Curie point (1121°C) and several 
oxidation states, cobalt has a broad range of applications as 
superalloys, magnetic alloys, high-speed steels, etc. 
 The ‘Delhi system’ represents rocks from northeast Rajas-
than to Gujarat deposited in spatially separated basins to 
form a single synchronous lithostratigraphic region13,14. 
On the basis of two distinct intrusive magmatic events, the 
Delhi basin further evolved into the North Delhi Fold Belt 
(NDFB; NE Rajasthan with multidepocentres) and the 
younger South Delhi Fold Belt (western and central area 
of the Aravalli Mountain Range)15,16. The NDFB comprises 
three distinct sediment repositories: Khetri, Alwar and 
Lalsot–Bayana sub-basins17. The Delhi supergroup rocks 
have been subdivided stratigraphically into three groups, 
viz. Raialo (dominantly carbonate–arenite), Alwar (domi-
nantly arenite) and Ajabgarh (dominantly metabasic and  
pelitic calcareous)14. The present study was carried out at 
Nasibpur hills and surrounding areas such as Raghunathpura 
and Kirarod ki dhani (28°4′50″N and 76°6′22″E) in Ma-
hendragarh district, Southwest Haryana, India (Figure 1), 
where the metasedimentary (garnet mica schist, amphibolite, 
marble, quartzite, phyllites and granitic gneiss) and magmatic 
(granite, pegmatite and quartz veins) phases of rocks are 
exposed in the isolated and linear ridges which form a part 
of NDFB. This Belt is intruded by various granitoid plutons 
in the range 1850–1700 Ma (refs 18–20). These activities 
are considered the source providing the necessary hydro-
thermal fluids to reactivate the mineralized system. The min-
eralization in NDFB has been recorded in different 
lithological units like scapolite, tremolite-rich calc-silicate 
rocks, amphibole-rich marble and quartz–carbonate veins, 
which is also structurally controlled within foliation planes 
and shear zones21,22. The average cobalt concentration in 
the upper continental crust was 10 ppm, and in the bulk con-
tinental crust, it was 35 ppm (ref. 23). All samples from 
the study area had higher cobalt concentration in comparison 
to the above-mentioned average concentration of cobalt in 
the upper and bulk continental crust (except samples KD-
4I and RP-13). 
 The occurrence of high cobalt was noted in samples of 
the zone with folding and fracturing of rocks sandwiched 
due to high pressure. This was evident by the presence of 
garnet mica schist as an increasing grade of metamorphism 
in the area (Figure 2 a). The associated sulphide minerali-
zation was observed in host rock quartzite (Figure 2 b). 
The radial pattern of amphibole minerals was visible with 
sulphide mineralization (Figure 2 c). A highly mineralized 
surface on brown quartzite was also observed (Figure 2 d). 
The role of meteoric and magmatic fluids has been empha-
sized by researchers in different cobalt deposits globally, 
particularly in DRC24 and the Bou Azzer deposit in Mor-
roco25, in response to an increase in pH. Various alteration 
patterns like albitization, chlorite, muscovite and biotite 
alteration associated with Co enrichment have been studied 
in the rocks26,27. The carbonates in the study area also 
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Table 1. Cobalt (Co) concentration in some of the major deposits of the world and in rocks (world average) 

Deposit  Co % Co (ppm) Rock type Co (ppm) Reference 
 

Black bird deposits, USA 0.58 5,800 Ultramafic 200 42 
Fredericktown, USA 0.27 2,700 Dunite 108.6 43 
Mount cobalt, Australia 0.05 500 Pyroxenite 55.2 43 
Joumasuo, Finland 0.2 2,000 Serpentinite 115.1 43 
Haarkumpu, Finland 0.17 1,700 Mafic 45.0 42 
Outokumpu, Finland 0.13 1,300 Gabbro 51.0 44 
Sotkamo, Finland 0.29 2,900 Basalt 41.0 44 
Werner Lake, Canada 1.68 16,800 Granite 47.0 42 
Modum, Norway 0.26 2,600 Felsic 5.0 42 
Olympic Dam, Australia 0.04 400 Shales 19 42 
Magnitogorsk, Russia 0.02 200 Carbonates 0.1 42 
Bou-Azzer, Morocco 0.02 200 Sandstone 0.3 42 
Cobalt Gowganda, Canada 0.02 200 Schist 40 25 
Mutanda, Democratic Republic of Congo 0.29 2,900 Quartzite 0.3 25 

 
 

 
 
Figure 1. a, Geological map of Nasibpur and surrounding areas, Haryana, India. (Inset) Map showing the location of Aravalli orogen. b, c, Detailed 
geological map of (b) Kirarod ki dhani hill and (c) Nasibpur hill showing cobalt (Co) enrichment zones. 
 
 
indicate CO2 mobilization due to metamorphic recrystalli-
zation, which reflects the significance of organic materials 
in the reduction of Co enrichment28. The pyrite veins in 
which sulphide is interstitial with silicates in the alteration 
zones have been identified with cobalt enrichment (Figure 
3 a). In Figure 3 e, biotite alteration along with albite can 
be seen associated with fractures in the rocks where high Co 
concentration occurs. The morphological, distribution and 
geochemical studies on sulphides have shown that in pent-

landite cobalt is usually isomorphically substituted for Ni2+ 
(ref. 29). The euhedral Co-bearing pyrite shows zonation in 
the pelitic mineral rock matrix (Figure 3 b). Cobalt-bearing 
minerals are associated with alteration pattern like scapo-
litization in the area, which can be seen along with the folia-
tion plane (Figure 3 c). Understanding the mineralization 
processes of nickel and cobalt requires the identification 
of several mineralization stages. In the study area, Co-
bearing sulphides have been identified in relict texture 
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Figure 2. a, Contact between garnet mica schist and brown quartzite showing increasing grade of metamorphism. b, Sulphide mineralization in host 
rock quartzite. c, Radial pattern of amphibole minerals with sulphide mineralization. d, Highly mineralized surface in brown quartzite. 
 
 
(Figure 3 d), with the pentlandite grains intergrown at the 
rims of Co-bearing phases in the microcracks (Figure 3 f ). 
An alteration pattern is visible where albite and biotite are 
present in rocks with high Co concentration with quartz 
and tourmaline (Figure 3 e). The textural relationship of 
cobalt-rich minerals and sulphides can be seen as the cobalt 
mineral phases are enclosed within sulphides and show re-
placement with pentlandite grains at the rims as evidenced 
by the fine-grained, porous and finely fractured characteris-
tics, either as a result of hydrothermal alteration or weath-
ering30,31. Possibly, the cobalt enrichment in the study area is 
linked to metamorphic terranes where different fluid types, 
such as magmatic–hydrothermal and metamorphic, lead to 
their concentration in the rocks. Also, cobalt enrichment in 
the faults and fractures produces cobalt-rich vein deposits in 

metasedimentary and metaigneous rocks of the Proterozoic 
age32. The prominent presence of Co in sulphides implies 
a relatively reducing environment. The physical and chemi-
cal conditions of the fluid system have a significant impact 
on the cobalt concentration in sulphides/sulphoarsenides33,34. 
 Furthermore, cobalt is also concentrated in metamorpho-
sed siliciclastic strata mainly of Proterozoic age with varied 
origin, which consists of a range of mineralizing processes 
including cobaltiferous pyrite, biotite, quartz, albite, scapolite 
and muscovite taking place before and after metamorphism. 
Studies have also linked these types of deposits with gra-
nitic plutons3,10. The presence of various alteration products 
like scapolitization, sulphidization and albitization in the 
study area demonstrates the role of fluids and a key pro-
cess for cobalt precipitation. The precipitation of cobalt can 
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Figure 3. a, Pyrite vein associated with microcline and quartz grains. b, Euhedral Co-bearing pyrite. c, Scapolitization with pyrite grains along the 
foliation plane. d, Co-bearing phases enclosed in sulphide. e, Albite grains showing replacement texture with quartz, biotite and tourmaline. f, Cobalt-
rich sulphide/sulphoarsenide with pentaldite rims. 
 
 
be seen along veins, fissures and cracks as metasomatic re-
placements aided by hydrothermal fluids. Analysis of cobalt 
concentration was done at the Wadia Institute of Himalayan 
Geology, Dehradun, using X-ray fluorescence (XRF; Bruker 
Tiger S-8) on pressed-powder pellets, with a precision of 

±5–6%. Table 2 shows the cobalt concentration in the exa-
mined rocks of the study area. 
 This enrichment of cobalt is revealed by pegmatites 
(167–519 ppm), phyllite (557–615 ppm), garnet mica 
schist (166 ppm) and quartzite (30–3657 ppm) in the study 
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Figure 4. Samples from the study area falling in the zone of hydrothermal origin where Co : Ni ratio is greater than 1. 
 
 

Table 2. Cobalt concentration in the rocks of Ajabgarh group, Delhi Supergroup  
  from Nasibpur and surrounding areas, Southwest Haryana, India 

 
Sample 

 
Location 

 
Rock type 

Cobalt concentration 
(ppm) 

 

NS-8 Nasibpur Quartzite 3,657 
NS-8A Nasibpur Quartzite 3,587 
NS-6B Nasibpur Quartzite 2,488 
NS-6I Nasibpur Quartzite 2,463 
NS-3 Nasibpur Quartzite 2,387 
NS-3I Nasibpur Quartzite 2,371 
KD-3 Kirarod ki Dhani Quartzite 607 
KD-3A Kirarod ki Dhani Quartzite 591 
KD-5 Kirarod ki Dhani Quartzite 243 
KD-7I Kirarod ki Dhani Phyllite 615 
KD-7 Kirarod ki Dhani Phyllite 557 
KD-1 Kirarod ki Dhani Pegmatite 519 
KD-1A Kirarod ki Dhani Pegmatite 487 
NS-6 Nasibpur Pegmatite 167 
NS-1 Nasibpur Garnet mica schist 166 
RP-1A Raghunathpura Quartzite 92 
RP-1 Raghunathpura Quartzite 88 
RP-7 Raghunathpura Granite Gneiss 62 
RP-13 Raghunathpura Amphibole Quartzite 30 
KD-4I Kirarod ki Dhani Amphibole Quartzite 30 

 
 

Table 3. Geochemical results of the studied samples having high Co concentration 

Sample SiO2 (%) Fe2O3 (%) Na2O (%) K2O (%) Al2O3 (%) Cu (ppm) Pb (ppm) Ni (ppm) 
 

KD-1 73.89 0.43 5.86 5.00 15.16 4 92 13 
KD-3 85.88 0.98 0.64 0.29 1.79 12 6 5 
KD-5 79.14 1.00 0.70 0.14 1.14 10 5 4 
KD-7 87.27 0.79 0.78 2.32 6.38 38 75 20 
NS-3 94.33 2.46 0.16 0.41 2.30 39 6 2 
NS-6 63.79 1.17 5.24 3.65 22.18 8 59 10 
NS-6I >95.9 0.67 0.17 0.38 0.87 25 93 5 
NS-8 >95.9 0.73 0.20 0.31 0.87 15 10 2 
KD-4I 50.98 5.01 0.99 0.29 2.39 4 11 3 
NS-1 53.73 7.27 0.66 5.66 23.04 43 6 72 
RP-7 55.11 5.65 1.38 4.50 11.52 BDL 15 47 
RP-13 52.38 3.29 0.84 0.36 2.19 2 BDL BDL 
NS-5 58.47 15.75 0.11 3.07 8.62 25 7 33 
RP-1 70.42 1.65 1.86 2.92 7.75 54 30 25 
RP-1A 73.21 2.15 0.97 0.38 2.74 18 8 14 
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Figure 5. Binary diagrams of selected elements from whole-rock analyses of samples. a, Co versus SiO2; b, Co versus 
Fe2O3; c, Co versus Na2O; d, Co versus K2O; e, Co versus Pb; f, Co versus Cu. 

 
 
area. Quartzites are classified into two groups on the basis 
of cobalt enrichment, where one group showed a 30–92 ppm 
concentration of cobalt, while the other had the highest 
concentration in the range of 243–3657 ppm. Maximum 
enrichment was shown by quartzites of Nasibpur Hill, viz. 
NS-3 (2387 ppm), NS-3I (2371 ppm), NS-6B (2488 ppm), 
NS-6I (2463 ppm), NS-8A (3587 ppm), NS-8 (3657 ppm), 
which is very high in comparison with the world’s average 
cobalt concentration in quartzite (0.3 ppm)30. This enrich-
ment can be correlated with the presence of brecciation, 
fracturing and foliation planes, which create a network for 
a high fluid/rock ratio. The amphibole-bearing quartzites 
(KD-4I and RP-13) showed a cobalt concentration of 
30 ppm, whereas the compacted grey–brown-coloured 
quartzite samples (NS-6I, NS-6B, NS-8, NS-8A) showed 
very high values ranging from 2463 to 3657 ppm. The hy-
drothermal alteration pattern was visible in the study area, 
indicating the role of fluids that aid the replacement pro-
cesses with associated sulphide mineralization. Phyllite 

sample contained 557–615 ppm cobalt concentration, and 
schist contained 167 ppm cobalt, which is also high rela-
tive to the world average concentration (40 ppm)35. The 
Co: Ni ratio in the samples was greater than 1, indicating its 
magmatic-hydrothermal origin (Figure 4).  
 The nature of the rocks and their mineralogical aspects 
must be considered when determining the possible mobility 
of trace elements. Table 3 shows the results of the geoche-
mical analysis of the samples with a high cobalt concentra-
tion. The siliceous rocks contained high Co concentration 
and showed a positive correlation. The quartzites, phyl-
lites and pegmatites contained high SiO2, ranging from 
73.21% to 95.9%. Correlation analysis also showed a weak 
to moderate positive correlation with Fe2O3, Pb and Cu, 
while some samples also showed a strong correlation with 
Na2O and K2O (Figure 5). The pegmatite samples with Co 
enrichment also showed high Na2O (5.24–5.84%) and high 
Al2O3 (15.16–22.18%). Co-bearing sulphide mineral phases 
were also revealed by sulphide saturation in the magma 
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during a significant amount of crustal material contamina-
tion36. Due to the high partition coefficient between sulphide 
and silicate melts, nickel and cobaltite tend to enrich the sul-
phide melt when sulphide saturation occurs in the magma37. 
 The pH and temperature of weathering solutions play a 
major role in the amount of cobalt dissolved and transported. 
This is because cobalt is often predominantly transported 
in sulphide and arsenide minerals in octahedral and tetra-
hedral sites due to increased entropy with temperature in 
hydrothermal solutions38. As the study area comprises var-
ious mineral assemblages like amphiboles, phyllosilicates, 
carbonates and garnet, it indicates the varied range of tem-
perature and pressure conditions in the area, which is impor-
tant for cobalt enrichment and has the potential to increase 
its mobility to form various cobalt complexes. In addition, 
it is likely to be mobile under some weathering conditions 
due to the instability of cobalt complexes with tempera-
ture and the dilution of saline fluid near the Earth’s surface 
that results in its precipitation39. Co-precipitation has been 
explained by an increase in oxygen and sulphur fugacity 
along with a drop in temperature as an important factor in 
the magmatic–hydrothermal fluid system40. The study on 
cobalt mineralization infers that hydrothermal systems in-
corporating oxidized brines have a stronger potential to 
transport and leach significant rock volumes of Co and Ni 
at any temperature or realistic pH (ref. 28). Therefore, vari-
ous geological processes like magmatic processes (differ-
entiation and fractional crystallization), hydrothermal activity 
and chemical weathering play a crucial role in Co concen-
tration in the rocks of the study area. The results of the 
present study call for further research to assess the cobalt 
resource in the study area. The global cobalt market is 
showing an increasing trend due to its wide variety of appli-
cations. So there is a need to understand its mineralization 
parameters in line with Government targets to achieve 
global climate goals as reaffirmed by the Paris Agreement 
in 2015 (ref. 41). The following conclusions can be drawn 
from the present study: (i) Several rocks contain high Co 
concentration in the study area, especially quartzites 
(2371–3657 ppm). (ii) Co is primarily found in pyrite and 
Co-rich sulphides/sulphoarsenides, making it a potential 
Co resource, as the minimum cut-off grade for Co in sulphi-
des is 300 ppm.  
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A new occurrence of Neoarchean stromatolite, older 
than 2600 Ma, has been found in the dolomite beds of 
Aleshpur Formation of the Chitradurga Group in the 
Shimoga Schist Belt, western Dharwar Craton. The oc-
currence is near Shanti Sagara lake (Sulekere) in the 
Davangere district of Karnataka. Stratiform, laminated, 
columnar with some showing branching forms indicate 
an advanced stage of evolution of stromatolites. The 
newly found stromatolite occurrence is an important ad-
dition to the inventory of Archaean stromatolites. 
 
Keywords: Archaean, Dharwar Craton, Shimoga Schist 
Belt, stromatolite. 
 
GLOBALLY, Neoarchaean carbonate rocks with palaeobio-
logical signatures such as stromatolites are rare. Any report 
of such an occurrence of Archaean stromatolites from a 
new geographical locality or stratigraphic level is therefore 
important to the global inventory1–4. In 2008, two of us 
(S.B.H.K. and S.A.K.), while prospecting for minerals in 
the Archaean Dharwar Schist Belts, noted an outcrop of 


