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The non-linear, non-stationary and complicated nature 
of agricultural price series makes their accurate fore-
casting extremely challenging. In comparison to standard 
statistical methods, artificial neural networks (ANN) 
have demonstrated promising results for predicting such 
series. However, the incorporation of auxiliary infor-
mation can improve prediction accuracy if it is closely 
linked to the target series. A dynamical neural archi-
tecture called a non-linear autoregressive model with 
exogenous input (NARX) carefully makes use of the auxil-
iary information to construct a data-dependent non-linear 
forecasting model. The study explores the performance 
of NARX model for the real price series of soybean oil 
(soybean) using soybean (soybean oil) price as exogenous 
inputs. NARX models outperform ARIMA, ARIMAX 
and ANN models in terms of RMSE, MAPE, MASE and 
directional statistics as evaluation criteria. Further, the 
Diebold-Mariano test confirms a significant improvement 
in its predictive accuracy. 
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PRICE forecasting for agricultural commodities is a challeng-
ing field of time series analysis. Production and price of 
agricultural commodities are not only governed by market 
forces and state regulations but are also affected by several 
abiotic factors like natural disasters, extreme weather con-
ditions, etc. and biotic factors like pests, diseases, etc.1. 
Reliable and accurate price forecasting is not only necessary 
for the food security of consumers but also for the producers, 
as it plays a key role in affecting their income. A thorough 
review of the literature affirms that many research works 
have endeavoured to construct models for price series intri-
cacies with the aim of enhancing forecasting accuracy2. 
These works have utilized broadly two categories of forecast-
ing models, namely statistical and machine learning models. 
Statistical models include linear models, such as autore-
gressive integrated moving average (ARIMA) and its sub-
models3, and non-linear models such as smooth transition 
autoregressive (STAR), self-exciting threshold autoregres-
sive (SETAR), and others4. However, due to prerequisite 
assumptions and the demand for a precise relationship among 
data, these statistical models cannot efficiently capture the 
non-linearity and complexity inherent in the price series. 

 Among the machine learning models, artificial neural 
networks (ANN), specifically, time delay neural networks 
(TDNN)5, have been dominant over statistical techniques 
for the last two decades6. An important strategy for improv-
ing the performance of the TDNN model is the use of aux-
iliary information. The present study attempts to apply this 
strategy to non-linear agricultural price series by building 
non-linear autoregressive with exogenous inputs (NARX) 
models7,8 with the lags of exogenous series. Compared to 
other machine learning approaches, NARX models allow 
for a simpler explanation of the parameter being studied, 
based on its relationship with exogenous inputs. NARX 
models also offer improved short-term forecasting due to 
the iterative updating of predictors and model parameters9. 
NARX networks offer a significant benefit over other ANN 
techniques as they are able to rapidly attain optimal weights 
for the connections between neurons and input parameters, 
requiring fewer iterations to construct an effective model10.  
 Soybean, scientifically known as Glycine max (L.) Merr., 
is an important commodity worldwide due to its versatility 
as a low-cost source of protein, unsaturated fats, carbohy-
drates, livestock feed, and biofuel. Recently, the health 
advantages associated with soybean oil have increased its 
global demand. As a result, the demand and production of 
soybeans are expected to grow in the upcoming years, pro-
viding benefits to farmers, purchasers, animal feed and 
biofuel manufacturers, as well as food producers. Therefore, 
it is crucial to have precise and reliable forecasting of 
soybean prices. The contribution of this study is that we 
develop optimized NARX models for price forecasting of 
soybean oil (soybean) using soybean (soybean oil) price as 
exogenous inputs. Furthermore, we conduct a comprehensive 
assessment of the predictive accuracy of the NARX model 
in comparison to the ARIMA, autoregressive integrated 
moving average with exogenous variables (ARIMAX) and 
TDNN models for both the target series and exogenous 
price series. 
 NARX is a non-linear system for discrete-time input–
output modelling that may be described mathematically as 
 
 y(t + 1) = f [y(t), …, y(t – dy + 1); x(t), …, x(t – dx + 1)], 
 (1) 
 
where y(t) ∈ ℝ and x(t) ∈ ℝ indicate the output and input 
of the model at discrete time-step t respectively, while 
dx ≥ 1 and dy ≥ 1, are lags of the exogenous series and the 
target series respectively, where dx ≥ dy. The model in 
vector form is as 
 
 y(t + 1) = f [y(t); x(t)], (2) 
 
where the vectors x(t) and y(t) represent respectively, the 
input and output regressors. Typically, the non-linear 
mapping f (.) is unknown and must be approximated. The 
resulting architecture is referred to as a NARX network11, 
a powerful dynamical model that is comparable computa-
tionally to Turing machines12. The architecture of a single 
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hidden layer NARX network is depicted in Figure 1. NARX 
networks are frequently more effective than traditional 
neural networks in detecting long-term dependencies. Back 
propagation through time (BPTT) is used to train these 
networks.  BPTT consists of two phases: time-unfolding the 
network and error backpropagation over the unfolded net-
work. A NARX network’s output delays during the initial 
stage appear as jump-ahead connections, which reduce the 
network’s sensitivity to long-term dependencies by giving 
gradient information a shorter path. As a result, a NARX 
network may replace any traditional network without sac-
rificing processing capability.  
 The ARIMA model is a group of models utilized to analyse 
time series data. The general ARIMA (p, d, q) model rep-
resents p order of the autoregressive (AR) part, d degree 
of first differencing, and q order of the moving average 
(MA) part. The model can be represented as ϕ(B)∆dyt = 
θ(B)ut, where yt denotes the price series at time t and ut is 
an error term assumed to be independently and identically 
distributed with zero mean and variance of σ 2. B is the 
backshift operator defined as Byt = yt – 1 and ∆ = (1 – B) 
represents the differencing operator. Additionally, ϕ(B) is 
polynomial of degree p in B and θ(B) is polynomial of degree 
q in B. ARIMAX is a generalized version of the ARIMA  
model. ARIMA is appropriate for univariate datasets, where-
as ARIMAX may include extra explanatory factors. Consider 
two stationary time series, yt and xt, then the transfer func-
tion model (TFM) may be expressed as follows 
 
 yt = C + µ(B)xt + ut, (3) 
 
where xt is input series, yt output series and C is the con-
stant term. µ(B)xt denotes response function that permits 𝑥 
to impact 𝑦 through lags and thus we can write 
 
 µ(B)xt = (µ0 + µ1B + µ2B2 + )xt. (4) 
 
 

 
 
Figure 1. Topology of a single hidden layer NARX network with dx 
delayed inputs and dy delayed outputs. 

Equation (3) is known as the ARIMAX model when xt and 
ut follow the ARIMA model. The coefficients µj are the 
impulse response weights which may be positive or negative.  
 Time delay neural network (TDNN)13 utilizes the time 
lags of a univariate series to portray its temporal dimension 
as short-term memory5. The TDNN model14 may be stated 
mathematically as 
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where yt, yt – 1, …, yt – p represents the inputs for a neuron. 
The output of the neuron at time step t + 1 is denoted as 
yt + 1, while ψ(.) and γ (.)  represent the activation functions 
of the hidden and output nodes respectively. ∂m is the 
weight between the mth hidden and output neurons, and 
wmj is the synaptic weight between the jth input and the 
mth hidden neurons. Finally, bm represents the bias term. 
 As there is no unique criterion for measuring accuracy 
that can reflect the complete distributional characteristics 
of the errors, four distinct metrics, i.e. root mean square 
error (RMSE), mean absolute percentage error (MAPE), 
mean absolute scaled error (MASE) and directional statis-
tics (Dstat) are used to compare the prediction output of the 
developed model to that of the other existing models. We 
used both RMSE and MAPE because the first is a scale-
dependent measure, whereas the latter is unit-free. On the 
other hand, MASE is a metric that can be computed as the 
average of the scaled error15. Dstat is employed to assess 
the precision of predicting the direction of price movement 
changes in the forecasts generated by each model. The 
mathematical formulae for the four metrics are presented 
below 
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indicate the actual and predicted values 

respectively; the prediction size is denoted by n, and 
a(t) = 1 if ˆ ˆ( ( 1) ( )) ( ( 1) ( )) 0y t y t y t y t+ − × + − ≥  or a(t) = 0 
otherwise. For the MASE calculation, the denominator 
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corresponds to the mean absolute error of the one step ‘naive 
forecast method’ applied to the training data set (t = 
1, …, T). Furthermore, to evaluate the notable enhance-
ment in the forecast accuracy of all models, the Diebold-
Mariano (DM) test is utilized16. The null hypothesis of the 
test assumes the loss differential, d(t) = f (e1(t)) – f (e2(t)); 
t = 1, 2, 3, …, n has zero expectation, i.e. both predictions 
are equal in accuracy, where (e1(t)) and (e2(t)) denote the error 
series from the forecasts of any two models. The DM test 
statistic is 
 

 ,
ˆ ( )

dDM
V d

=  

 
where n denotes the prediction size, 1
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n
t tnd d== ∑  is the 
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autocovariance of d(t). 
 The NARX model has been evaluated empirically using 
monthly international price ($/MT) data for soybean oil 
and soybean, which have been sourced from the ‘World 
Bank Commodity Price Data’ for the period between Jan-
uary 1980 and November 2021. Both price series comprise 
503 observations and Figure 2 shows their time plots. Table 
1 depicts the basic statistics of the price series, where it 
can be seen that the standard deviations of both series are  
high. Both series are leptokurtic and positively skewed in 
nature, while the non-normal nature of each series is con-
firmed using Jarque-Bera test17.  
 
 

 
 

Figure 2. Monthly international price of soybean oil and soybean. 
 
Table 1. Various descriptive statistics of monthly international price  
  ($/MT) of soybean oil and soybean 

Statistics Soybean oil Soybean 
 

Average 672.9 327.60 
Minimum 271.0 183.00 
Maximum 1574.7 684.00 
Standard deviation 279.52 115.51 
Kurtosis 0.713 0.11 
Skewness 1.10 1.01 
Jarque-Bera (p-value) 112.66 (<0.001) 86.69 (<0.001) 

 The non-stationarity feature of two price series is con-
firmed using augmented Dickey-Fuller (ADF)18 and Phillip–
Perron (PP)19 tests, as shown in Table 2. Additionally, the 
non-linearity of two data series is confirmed through the 
Brock–Dechert–Scheinkman (BDS)20 test, as presented in 
Table 3. The dataset comprising 503 data points was divided 
into training and testing sets for model fitting, where the 
testing set contained 12 data points (one year), and the 
remaining formed the training set for building models and 
in-sample prediction. R statistical software version 3.6.1 
is used to develop the models and perform statistical anal-
ysis in this study. 
 In order to fit NARX models for the price series of soy-
bean oil, the price series of soybean is considered an exog-
enous series, and vice versa. The time plots and descriptive 
statistics of the data show that each series is unstable and 
has high variability. Hence, before implementing models 
on the datasets, we employed a natural logarithmic modi-
fication to stabilize the variance of the data. The process of 
modelling begins with data pre-processing and converting 
it to a supervised learning format. We used the NARX 
model architecture, which included an input layer, a hidden 
layer and an output layer with a single output node. Hidden 
layer and output layer employ a sigmoid and an identity 
activation function respectively. The NARX network is 
constructed in two phases. The training phase is carried 
out using a series–parallel design, sometimes known as an 
open loop architecture, because it resembles pure feed-
forward. This particular architecture takes into account the 
actual output instead of using the estimated output, which 
allows for a more precise input to be fed into the feedfor-
ward network. In the second phase, the configuration of 
series-parallel is altered to a parallel configuration for test-
ing. This closed-loop setup is ideal for forecasting multiple 
steps. As a result, during the testing phase, the estimated 
result is used as the input value for the next computation 
iteration. The NARX model’s training necessitates the ad-
justment of several hyperparameters, including the number 
of input nodes, hidden nodes, output nodes and epochs. 
We set the number of epochs at 500 and the output node at 
1 (ref. 21).  
 We utilized the grid search technique to explore all fea-
sible combinations of input and hidden nodes by creating 
a two-dimensional grid to adjust them. The allowable range 
for the number of nodes at hidden layer and lags is between 2 
and 20 for both the target and exogenous series. Each setup is 
repeated 50 times, and the average outcome is utilized to 
identify the most precise configuration. The findings indi-
cate that when using soybean as an exogenous series, the 
NARX model with 4 and 6 nodes at input and hidden layers 
respectively, performs the best for soybean oil. For soy-
bean, however, the NARX model with 6 and 8 nodes at 
input and hidden layers respectively, utilizing soybean oil 
as an exogenous series exhibits better performance in 
terms of RMSE and MAPE. The ARIMA, ARIMAX and 
TDNN models are fitted as per the standard procedure14,22. 
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Table 2. Results of Philips Perron (PP) and Augmented Dickey-Fuller (ADF) tests  
  on soybean oil and soybean price series 

 PP unit root test ADF test  
 

Price series Statistic p-value Statistic p-value Remarks 
 

Soybean oil –16.22 0.21 –3.42 0.05  Non-stationary 
Soybean –18.17 0.10 –3.51 0.04  Non-stationary 

 
 

Table 3. Results of Brock–Dechert–Scheinkman (BDS) test on soybean oil and soybean price series 

 Soybean oil Soybean  
 

 Embedding dimensions Embedding dimensions  
 

Epsilon 2 3 2 3 p-value 
 

0.5σ 109.36 177.70 79.88 124.01 <0.0001 
1.0σ 59.98 70.74 61.84 74.62 <0.0001 
1.5σ 46.54 48.04 50.09 52.31 <0.0001 
2.0σ 40.34 39.10 42.92 42.01 <0.0001 

 
 

 
 

Figure 3. Price forecasts versus actual price of different models for (a) soybean oil and (b) soybean. 
 
 
In case of fitting soybean price series, both ARIMA and 
ARIMAX models were optimized at p = 1, d = 1 and 
q = 0, while the number of lags for the exogenous series for 
ARIMAX model was 1. In case of fitting soybean oil price 
series, both ARIMA and ARIMAX models were optimized 
at p = 3, d = 1 and q = 1, while the number of lags for the 
exogenous series for ARIMAX model was 3. In case of 
soybean series, TDNN model was optimized at 4 input 
nodes and 8 hidden nodes, while in case of soybean oil series 
TDNN model was optimized at 4 input nodes and 6 hidden 
nodes. We were interested in short-term forecasting and 
hence evaluated forecast horizons of up to 12 months. 
Figure 3 depicts the forecasted series and the level series 
for both soybean oil and soybean price series using ARIMA, 
ARIMAX, TDNN and NARX models. From the figure, it 
can be seen that the forecasts are more accurate when ob-
tained using NARX models. Table 4 confirms the superi-
ority of these models across both evaluation criteria and 
Figure 4 presents the bar diagrams of the RMSE of each 

model for both series. The empirical results show that NARX 
model gets the lowest scores for the three evaluation criteria 
RMSE, MAPE and MASE. From Table 4, it is observed 
that NARX models perform better than ARIMAX models 
as it is obvious that ARIMAX models are inefficient at cap-
turing non-linearity. Further, it was observed that the use 
of exogenous series improved both the statistical and neural 
network models in terms of RMSE and MAPE. While com-
paring the NARX model among other models through 
MASE, we used ARIMA model as the benchmark model. 
Thus, each model was scaled from the ARIMA model 
while calculating MASE and the result is shown in Table 4. 
The values of MASE also confirmed that NARX was bet-
ter than TDNN which was better than ARMAX. The direc-
tional statistics evaluated from the forecasts obtained from 
every model are also presented in Table 4. We found that 
NARX was capturing the direction of price movement bet-
ter as compared to other models. Further, we also observed 
that the models that utilized exogenous series (ARIMAX 
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Figure 4. Bar diagram of RMSE of soybean oil and soybean for different models. 
 
 

Table 4. Optimized results in terms of RMSE, MAPE and Dstat (%)  
  of every model for price series of soybean oil and soybean 

Criteria Series ARIMA ARIMAX TDNN NARX 
 

RMSE  Soybean oil 0.339 0.300 0.205 0.075 
  Soybean 0.136 0.068 0.053 0.040 
MAPE  Soybean oil 4.278 4.119 2.516 0.828 
  Soybean 1.930 0.845 0.689 0.499 
MASE  Soybean oil 1.000 0.699 0.588 0.194 
  Soybean 1.000 0.435 0.356 0.258 
Dstat (%)  Soybean oil 27 73 55 91 
  Soybean 91 91 73 100 

 
 

Table 5. Diebold-Mariano test results showing test statistics of different models for 12 forecast horizons with p values (in bracket) 

 Soybean oil Soybean 
 

 Benchmark models Benchmark models 
 

Tested models ARIMA ARIMAX TDNN ARIMA ARIMAX TDNN 
 

ARIMAX 4.80 (<0.001)   2.32 (0.02)   
TDNN 5.26 (<0.001) 1.94 (0.04)   3.73 (0.001) 0.92 (0.19)  
NARX 5.23 (<0.001)   4.86 (<0.000) 3.95 (0.001)  3.68 (0.001) 1.69 (0.05) 2.16 (0.03) 

 
 
and NARX) had a better capability of capturing the price 
movement direction. The DM test was employed to investi-
gate the improvement in predictive accuracy among the 
NARX models over other models. The DM test results are 
presented in Table 5 for both soybean oil and soybean series, 
which demonstrate that the NARX model significantly 
outperformed the other benchmark models and has superi-
or accuracy in forecasts over them. 
 The key benefit of this study is that we have used a 
strategy by utilizing the price series of related commodities 
as exogenous series to improve the modelling ability of 
the neural network model which gives a better prediction 
of prices of such irregular agricultural price series. Such reli-
able, robust, and more accurate predictions may guide the 
farmers and various stakeholders in analysing and taking 
proper decisions on production, timing to conduct open 
market operations and other policy decisions well in advance. 

 A promising forecasting model called the NARX model 
is empirically evaluated and its performance is compared 
with ARIMA, TDNN and ARIMAX models using monthly 
international price series of soybean oil and soybean. We 
developed the NARX model for the price series of soybean 
oil (soybean) considering the price series of soybean (soy-
bean oil) as an exogenous series. From the empirical evalua-
tion, we confirm that we can improve the neural network 
models for agriculture price series by utilizing the series 
of correlated exogenous series, and thus NARX models out-
perform other competing models. This shows that the prices 
of closely linked commodities may be valuable for better 
predictive capacity. Results can be utilized as technical 
forecasts on their own or in conjunction with fundamental 
projections to create perspectives on price patterns and 
conduct policy research. However, even if neural network 
models (particularly NARX) are more effective at capturing 



RESEARCH COMMUNICATION 
 

CURRENT SCIENCE, VOL. 125, NO. 1, 10 JULY 2023 84 

the patterns of a non-linear series, training these models re-
quires adept data management, vigorous coding skills, and 
adequate amounts of time. Future work may involve inves-
tigating the performance of models utilizing any decom-
position techniques before applying the NARX model or 
multilayer NARX network for agricultural price forecasting. 
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