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The soil carbon sinking ability is dominantly controlled 
by local topographical settings, soil–crop management 
and traditional farming practices on which the food 
demand of the major population is dependent. The 
degradation of natural resources causing poor soil 
health is likely to strain the hilly and mountain ecosystem. 
This study aims to map soil organic carbon (SOC) of 
rice–fallow system under varying slopes and its changes 
during the past 20 years under traditional management 
practice using geospatial tools and techniques. Regres-
sion models of SOC were derived from remote sensing 
(RS)-based indices using multiple linear regression-
stepwise (MLR-stepwise), partial least square regression 
(PLSR) and principal component analysis-regression 
(PCA-R). The MLR-stepwise model was found to be 
superior in performance with high R2 (0.87) and least 
RMSE (0.026) compared to PLSR (R2 = 0.71 and RMSE = 
0.05) and PCA-R (R2 = 0.27 and RMSE = 0.11) models 
for SOC prediction. 
 
Keywords: Regression models, remote sensing, rice–
fallow system, soil organic carbon, spectral indices. 
 
THE heterogeneous traditional mountain communities living 
in close proximity are concerned with their indigenous 
farming practice and productivity. The traditional agricul-
tural practice has been receiving attention for food security1 
and quality control for biodiversity conservation2. Soil 
degradation causes a decline in soil fertility and escalates 
soil erosion under varying slope gradients3,4. Soil organic 
carbon (SOC) indicates soil health5 and provides nutrients 
to plants6 and sustainable agroecosystem7. A small fraction 
of SOC is sensitive to changes in land management or en-
vironmental conditions8,9. Global issues related to carbon, 
i.e. carbon emission and decreasing soil carbon reserves 
under tremendous population pressure, can be minimized 
with judicious management. There is an urgent need to assess 
SOC in the hilly regions, as it is plagued by soil erosion 
and degradation10. There is scope for improving soil quality 
through soil nutrient pool and structure stability, enhanc-
ing cation exchange and water-holding capacity, as well as 
retaining toxic elements and microorganisms11. 
 The ability to sink atmospheric carbon in the soil varies 
with topography, land use and management12. Topogra-

phy-induced diverse local conditions within the same cli-
matic zone lead to distinct SOC patterns and distribution. 
The sloppy land has a uniform variation of labile carbon 
fraction13 and high SOC with vegetation14. On the other 
hand, labile carbon fraction is found in the order of upper 
slope > down slope > mid-slope regions10. In rice-cultivated 
areas, it is observed that the lower slope contains more 
SOC than the hilly slope15. Considering the importance of 
hilly topography, India’s zero carbon emission policy can 
be achieved by properly managing hill SOC. Many studies 
suggested the enrichment of nutrients and SOC by incor-
porating crop residues into the soil16. However, crop resi-
dues and stubble are removed from the fields for fodder or 
fuel or burnt in the field. It is estimated that annually more 
than 5.3 billion tonnes of crop residues are produced world-
wide, with increasing total production of cereal grains17. 
The concentration of total organic carbon in 10 years of 
continuous fertilizer has increased by 33% and treatment 
combination of fertilizer with wheat residues increases 
about 55% over the control18. 
 Northeast India is one of the mega biodiversity hotspots. 
Rice is the dominant crop, where direct seeded rice is cul-
tivated even up to a slope of 32%. Transplanted wet rice 
cultivation dominates the foothill regions with mostly a 
rice–fallow cropping system. In Meghalaya, NE India, indig-
enous tribal Khasi farmers follow a conventional farming 
system in the highly fragile undulating topography. The 
Ri-Bhoi district, popularly known as the ‘Granary of 
Khasi hills’, has fertile soil, and the local farmers don’t 
sow seed but throw and wait for the harvest’19. However, 
crop productivity in such fragile land with traditional 
farming depends upon the natural enrichment of the soil. 
Timely checks of the fertility status of the soil, proper sci-
entific interventions based on a quantitative assessment of 
SOC are important for sustaining crop production and pro-
viding scope for the potential of carbon sequestration20. 
Different methods have been used to estimate SOC in agri-
cultural land. Most conventional methods for SOC estima-
tion are based on the laboratory analysis of field soil 
samples21–23, and aim for the maximum oxidation and recov-
ery of carbon24. The sample point-based soil data are dis-
crete in nature and incapable of providing continuous and 
complete information (i.e. spatial variability of SOC) of 
the entire study area. Numerous studies on the digital 
mapping of SOC have been conducted to address this issue 
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Figure 1. Study site with soil sampling locations. 
 

 
based on spatial autocorrelation of the soil25–28. Many 
studies have proven that soil properties exhibit strong spa-
tial dependence between neighbouring regions, and trend 
surface analysis, inverse distance weighted and geostatis-
tical models have been successfully used to map and charac-
terise the soil29–31. Martín et al.32 used classical geostatistical 
tools to study temporal variability in agricultural soil. 
Similarly, Zhao et al.33 studied the temporal variation of 
SOC in agricultural land on regional and continental scales 
using GIS-based spatial analysis and geostatistics tools. 
These methods merely rely on the correlation between soil 
sample points, limited by their geographical location. In other 
words, traditional geostatistical methods based on geospa-
tial autocorrelation have two limitations: they are locally 
limited by sampling density34,35 and ignore the role of envi-
ronmental factors, resulting in inconsistent observations36,37. 
These methods encounter difficulty in describing the spatial 
distribution characteristics of SOC in complex terrains. 
The limitations of geostatistical approaches are overcome 
with indirect SOC estimation using remote sensing-based 
spectral indices21,22. Many researchers have estimated 
SOC content using the regression model built from the SOC 
data and remote sensing (RS) indices23,38. Yu et al.39 sugge-
sted that climate parameters, mainly temperature and precipi-
tation, management practice, and topographical settings 
such as slope, aspect and elevation influence SOC storage 
and variation. Also, soil properties significantly impact 
SOC stock and dynamics such as clay40,41, pH42 and alluvial 
deposition43. 
 In this study, we assess the SOC storage of rice–fallow 
system under varying slope conditions with a regression 
approach taking SOC as the dependent variable and RS indi-
ces as predictors covering observations of the past 20 years 
(1999–2019). Considering the importance of SOC as a 
critical indicator of soil health in fragile hill ecosystems, 

geospatial information generated from the study is expected 
to support sustainable crop production and environmental 
planning. 

Materials and methods 

Description of the study area 

The study was carried out in Bhoirymbong, Ri Bhoi district, 
Meghalaya, with a geographical extension of the study area 
from 91°20′30″ to 92°17′00″E longitude and 25°40′ to 
26°20′N latitude, having an elevation of 1014 m amsl 
(Figure 1). Famers in Bhoirymbong follow rice–fallow crop-
ping system covering an area of around 605 ha in varying 
slopes. Rice is transplanted as rainfed in June–July and 
harvested in October–November. The study area falls under 
the Eastern Himalayan Region (VII) Sub-Tropical Hill 
Zone (NEH-5) agro-climatic zone44. The soil is moderately 
acidic pH, fine, and excessively drained, varying from 
loamy to fine loamy Typic kandihumults. The area is con-
fined to a moderately steep hill slope and is highly prone 
to erosion. The temperature ranges between 10°C and 30°C, 
and the average annual rainfall is about 1907.6 mm for 
129 days a year. 

Environmental and topographical variables 

In the study, auxiliary variables like climate (temperature 
and rainfall) and land use (pine forest and rice–fallow sys-
tem) were considered as constant, while the variable factors 
were soil attributes, elevation and slope (Figure 2). The eleva-
tion and slope were derived from the freely accessible 
30 m Shuttle Radar Topography Mission (SRTM) digital 
elevation model (DEM) projected to WGS84 and EGM96 
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Figure 2. (a) Slope map and (b) land cover map of the study area. 
 
 

Table 1. Detailed information of Landsat data 

     Resolution 
 

     Spectral (µm) 
 

     Blue Green Red NIR 
 

Year Satellite image Acquisition date Sensor Spatial (m) (0.45–0.51) (0.52–0.60) (0.63–0.68) (0.85–0.89) 
 

2019 Landsat 8 November OLI 30 B2 B3 B4 B5 
2009 Landsat 5 November TM 30 B1 B2 B3 B4 
1999 Landsat 7 December ETM+ 30 B1 B2 B3 B4 
2014 SRTM  Slope, DEM 30     

 
 
(Earth Gravitational Model 1996) from the official website 
of USGS Earth Explorer (https://earthexplorer.usgs.gov). 
The DEM file was reprojected and reclassified by importing 
a coordinate system of Landsat data to ensure similar pixel 
size. The slopes were classified into five classes, viz. nearly 
level (0–3%), gentle slope (3–8%), moderate slope (8–15%), 
strong slope (15–30%) and steep slope (>30%) using the 
spatial analyst tool in ArcGIS 10.5 (Figure 2)45. Using 
Iso-cluster unsupervised classification, three distinct land-
cover maps were generated based on grouping similar raster 
values for (a) agriculture, (b) forest and (c) urban settle-
ment (Figure 2). 

Remote sensing indices 

Orthorectified WGS84 and UTM Zone 46 N datum, <10% 
cloud-free Landsat data for 1999 (Enhanced Thematic 
Mapper, ETM+), 2009 (Thematic Mapper, TM) and 2019 
(Optical Land Imager (OLI) level-2 C2; path 136/row 042) 
with acquisition on 4 December 1999, 4 November 2009 
and 16 November 2019 respectively were accessed from 
the website of USGS Earth Explorer USGS on 11 November 
2021. The satellite data were nearly synchronized with soil 
sampling time. Table 1 presents the sensor characteristics. 
The shape file of the study area was prepared from the 
Google Earth Pro image and projected with the same pro-
jection parameters of Landsat data in ArcGIS 10.5. The 

study site was delineated and extracted with all the bands 
of Landsat data using the shape file. Top of atmosphere 
(TOA) reflectance was more consistent than surface reflec-
tance46. In spatial SOC prediction using Landsat TM level-2 
data, the digital number was converted to radiance and then 
to reflectance47. The atmospheric and radiometric correc-
tion of each band was converted to TOA reflectance using 
the following equation48 
 
 ρλ = MpQcal + Ap/sin(Vse), 
 
where ρλ is the TOA planetary reflectance, Mp the band-
specific multiplicative rescaling factor, Ap the band-specific 
additive rescaling factor, Qcal the quantized and calibrated 
standard product pixel values and Vse is the sun elevation. 
 A total of 15 different RS indices as a predictor (inde-
pendent) variables in model construction were derived, 
which include normalized difference vegetation index 
(NDVI), soil adjusted vegetation index (SAVI), renormalized 
difference vegetation index (RDVI), optimized soil adjust-
ed vegetation index (OSAVI), modified soil adjusted vegeta-
tion index (MSAVI), infrared percentage vegetation index 
(IPVI), enhanced vegetation index (EVI2), redness index 
(RI), hue index (HI) and coloration index (CI). The selected 
soil indices were bare soil index (BSI) and normalized dif-
ference soil index (NDSI). Other indices considered were 
normalized difference water index (NDWI) and soil organic 
carbon index (SOCI; ref. 49; Table 2 and Figure 3). NDVI 

https://earthexplorer.usgs.gov/
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Table 2. Remote sensing indices used in this study 

Variables Source/resolution/formula Reference 
   

Auxiliary   
 Slope SRTM (30 m)  
 Elevation SRTM (30 m)  
Vegetation indices   
 NDVI NDVI = (NIR – Red)/(NIR + Red) 89 
 SAVI SAVI = (1 + L) * (NIR – Red)/(NIR – Red + L) 60, 90 
 RDVI RDVI = (NIR – Red)/√(NIR + Red) 91 
 OSAVI OSAVI = (NIR – Red)/(NIR + Red + 0.16) 92 
 MSAVI MSAVI = (1 + L) * (NIR – Red)/(NIR – Red + L) 93 
  L = 1 – 2 * a * NDVI * WDVI  
  a = NIR/Red  
IPVI IPVI = NIR/(NIR + R)  
EVI2 EVI2 = 2.5[(NIR – Red)/(NIR + 2.4Red + 1)] 94 
Color indices   
 RI RI = Red2/(Blue * Green3) 95, 96 
 HI HI = (2Red – Green – Blue)/(Green – Blue) 95, 96 
 CI CI = (Red – Green)/(Red + Green) 95, 96 
Soil indices   
 BSI BSI = [(SWIR + Red) – (NIR + Blue)]/[(SWIR + Red) + (NIR + Blue)] 97 
 NDSI NDSI = (middle IR – Green)/(middle IR + Green) 98, 99 
Others   
 NDWI NDWI = (Green – NIR)/(Green + NIR) 100 
 SOCI SOCI = Blue/(Red * Green) 49 

 
 

 
 

Figure 3. The remote sensing (RS)-derived (15) indices. 
 
 
was used to monitor and predict the agricultural yield and 
biomass50–52. It was determined by the ratio of the normal-
ized difference between recorded canopy reflectance in 

the red (600–700 nm) and near-infrared (750–1300 nm) 
bands53. NDVI values ranged between –1 and +1; positive 
values indicated vegetative or highly reflecting surfaces, 
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while negative values indicated non-vegetative or non-
reflective surfaces54. It was sensitive to a small range of var-
iations in spectral reflectance from vegetation55,56. The 
normalization reduces the effect of atmospheric and back-
ground soil57 and also reduces the impact of degradation of 
satellite calibration58,59. The results can be improved by 
employing other vegetation indices such as SAVI, RDVI, 
OSAVI and MSAVI. SAVI was developed to minimize 
the influence of soil using a correction factor (L)60. The 
value of L ranged from 0 (high-density vegetation) to 1 
(scattered vegetation, very high soil reflection), with 0.5 as 
the intermediate L value. SAVI was equal to NDVI with 
L = 0. SAVI was modified to MSAVI by replacing its cor-
rection factor (L) with a factor (L) of the product NDVI and 
weighted difference vegetation index (WDVI; WDVI = 
NIR – a * red) as L = 1 – 2a NDVI × WDVI, where a is 
the ratio of NIR/red. RDVI uses the difference between 
near-infrared and red wavelengths, indicating healthy veg-
etation. It is insensitive to the effects of soil and sun-
viewing geometry. OSAVI is based on SAVI and uses a 
standard value of 0.16 for the canopy background adjust-
ment factor, which provides greater soil variation for low 
vegetation cover. OSAVI is useful in areas of sparse vege-
tation (visible soil through the canopy). IPVI is functionally 
the same as NDVI, but computation is faster, with values 
ranging from 0 to 1. EVI is the outcome of a combination 
of blue (to correct for aerosol influences in the red band), 
red and NIR band reducing the atmospheric soil background 
effect by adjusting the factor L. RI defines the redness inten-
sity of sand-grain coating with hydrates of iron oxide, i.e. 
goethite (FeOOH) and hematite (Fe2O3)61, and during in-
tense weathering liberates iron attached to clay minerals62. 
BSI is the normalized index of blue, red, NIR and SWIR 
bands to characterize soil variation, i.e. uncovered by grass, 
woodchips, live ground, artificial turf, etc. and its value 
ranges from –1 to +1. SWIR and red bands are used to 
quantify the soil mineral composition, while blue and NIR 
bands enhance vegetation63. A comparison between BSI 
and NDVI was carried out to estimate the barren areas. 
NDSI was derived from the normalized combination of 
middle infrared (2080–2350 nm) and green (520–600 nm), 
improving soil information and suppressing impervious 
surface area and vegetation. NDWI effectively measures the 
moisture content and water body, which are separated from 
soil and vegetation. It is calculated using green (maximum 
reflection from water surface) and NIR (maximum reflec-
tion from vegetation and soil) combination having values 
from 0.2 to 1 for water, 0.0 to 0.2 for flooding or humidity,  
–0.3 to 0.0 for moderate drought (soil and vegetation) and  
–1 to –0.3 for drought (soil and vegetation). SOCI was de-
veloped by a combination of blue, green and red bands with 
SOC data. This index is comparable to estimations from 
SWIR/NIR, i.e. 1608/833 nm ratio having a high correla-
tion with SOC (R2 = 0.98). The SWIR (1300–2500 nm) and 
NIR (700–1300 nm) portions are sensitive to SOC since 
the reflectance decreases with increasing SOC64. 

 RS indices were estimated using a raster calculator to 
generate regression equations for predicting the dependent 
variable, i.e. SOC. The RS indices, slope and land cover 
for each sampling point were extracted using spatial analyst 
tools. Figure 4 presents the flowchart of SOC mapping. 
SOC was validated with 25% of the total samples. 

Soil sampling and analysis 

The coordinates of soil sample locations were recorded 
with a hand-held global positioning system (GARMIN, 
GPSMAP-64) having an accuracy of ±3 m. A total of 100 
composite soil samples were collected at 0–20 cm depth 
after rice harvesting in November. Each composite sample 
was prepared from the ten randomly collected samples 
within 1 ha area, following the standard procedure65,66. 
Immediately, the samples were brought to the laboratory, 
air-dried, crushed, mixed thoroughly and sieved through 
0.5 mm sieves for SOC estimation by the Walkley and Black 
wet oxidation method67. About 75% of the sample population 
was used as SOC predictors, and the remaining 25% for 
model validation. The model outputs were extrapolated for 
the subsequent years (1999–2019). 

Statistical analysis 

Pearson’s correlation coefficient between SOC and the 15 
RS indices was calculated at a 0.05 significance level using 
IBM SPSS package v26.2. Different regression models, viz. 
multiple linear regression-stepwise (MLR-stepwise), partial 
least square regression (PLSR) and principal component 
analysis regression (PCA-R), were used for SOC prediction. 
The model performance was evaluated by calculating the 
coefficient of determination (R2) and root mean square error 
(RMSE). For the MLR-stepwise model, the predictor vari-
ables were selected one by one based on the performance 
of significance tests and the non-significant variables were 
removed. This process was run until no variable could be 
selected or rejected68. The general equation for MLR is as 
follows 
 
 Y = α0 + α1x1 + α2x2, …, αkxk, (1) 
 
where Y is the dependent variable, x1,2, …., k are the different 
independent variables, α0 is a constant and α1,2, ..., k is the 
regression coefficient for the corresponding independent 
variables. 
 PLSR is considered more robust when there is multi-
collinearity between the dependent and independent varia-
bles by projecting into new space instead of the hyperplane 
used in ordinary linear regression. It has been extensively 
studied to estimate SOC with various spectral indices69. 
The general equation for PLSR is as follows 
 
 X = TP^ + E, (2) 
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Figure 4. Schematic diagram of the detailed work plan. 
 
 
 Y = UQ^ + F, (3) 
 
where X and Y are the predicted and response matrices res-
pectively; T and U are the new projected matrices for X 
and Y respectively, P^ and Q^ are the orthogonal loading 
matrices; and E and F are the error terms for the predicted 
and response matrices respectively. 
 PCA-R is a combined mathematical method of principal 
component analysis and linear regression. It is based on 
the dimension reduction of variables having a high corre-
lation to principal components (PCs), which is determined 
by the highest eigenvector value. Standardization of the 
data is done as follows 
 
 Y* = (Y – ӯ)/SD, (4) 
 
where Y* is the standardized data, Y the original data, ӯ 
the mean, and SD is the standard deviation of Y. PCs are 
calculated based on the following matrix equation 
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where PCn is the n PC of the dataset, Cnn is the loading 
coefficient and *nY  are the standardized variables. The 
general equation showing the relation between the covariance 
matrix, eigenvectors and principal axes is as follows 
 
 CPCn = αnPCn, (6) 
 
where C is the covariance matrix and αn is the nth largest 
eigenvalue of C. 
 The best-performing regression model for SOC prediction 
was selected using a raster calculator tool in ArcGIS 10.5 
on the basis of R2 and RMSE. The level of significance of 
the predicted SOC was tested with a one-sample t-test. The 
significant difference of SOC within varying slopes was 
analysed with one-way ANOVA using Post-hoc Gabriel’s 
test (P < 0.05). Finally, the change detection of SOC during 
the past 10 (2009) and 20 (1999) years from the base year 
(2019) was evaluated with a sample t-test taking the mean 
SOC value of each year. All the predictors and other auxi-
liary variables were described numerically. All the statistical 
analyses were performed using XLSTAT (2022.1) package, 
MS-Excel and IBM SPSS package v26.2 (Table 2). 

Model validation 

Laboratory analysed SOC, i.e. actual SOC variables (Table 
3), were cross-validated with model-estimated SOC using 
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R2 and RMSE (Table 4). The model with the least RMSE and 
highest R2 values was considered ideal and selected23,70. 
The lower RMSE value indicates more concentrated data 
around the line of best fit, i.e. less error71. 
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where yi is the actual SOC, ˆiy  the predicted SOC, y  the 
mean of actual SOC and n is the number of samples. Fig-
ure 4 is a schematic diagram of the detailed work plan. 

Results and discussion 

Descriptive statistics 

Table 5 and Figure 3 present the descriptive statistics of 
SOC and RS indices. The data were observed to follow a 
normal distribution upon removing the outliers; hence, no 
 
 

Table 3. Ground control points used for model validation 

 
Latitude (N) 

Longitude  
(E) 

Elevation  
(m) 

Soil organic  
carbon (%) 

Slope 
class 

 

25.743917 92.06117 895 1.83 3 
25.7432 92.0725 878 2.33 1, 2 
25.7447 92.0835 891 1.44 2 
25.7486 92.082 889 2.6 2 
25.7506 92.0835 909 2.14 1 
25.745184 92.085483 – 1.37 1 
25.742968 92.082547 – 2.15 1 
25.743261 92.075019 887 2.05 1, 2 
25.747319 92.054105 876 2.09 1, 2 
25.74992 92.079743 – 2.58 3 
25.749278 92.082819 894 2.52 1, 2 
25.746225 92.079093 884.24 2.23 1, 2 
25.739056 92.054908 878.095 2.27 1 
25.734806 92.056611 868.03 2.31 2 
25.7325 92.057722 868.945 1.94 1 
25.732444 92.058833 869.25 1.87 1, 2 
25.733972 92.062167 868.945 2 1 
25.735333 92.062917 873.52 1.87 1 
25.735583 92.063639 870.165 1.81 1 
25.7344 92.0649 879 2.33 1 
25.7349 92.0646 873 2.37 1 
25.7418 92.0793 886 2.36 2, 3 
25.742358 92.083616 879 2.49 2 
25.738624 92.068782 – 2.22 1 
25.739857 92.069044 874 2.31 1, 2 
25.731949 92.061549 876.7 2.57 1, 2 
25.739458 92.060098 887 2.57 1, 2 
25.729715 92.056877 890 2.63 1, 2 
25.728756 92.047725 877 2.29 2 
25.722532 92.045532 869 2.12 2 

Note: 1, Nearly level (0–3%); 2, Gentle slope (3–8%); 3, Moderate slope 
(8–15%); 4, Strong slope (15–30%) and 5, Steep slope (>30%). 

transformation was performed. SOC content ranged between 
1.24% and 2.87% with a mean value of 2.23%, highest 
(2.87%) at strongly sloping (15–30%) and lowest (1.24%) 
at gently sloping category (3–8%). This difference in SOC 
is associated with varying slope positions and steepness of 
topography which may result in the microclimate (local 
climatic) and typical geological processes, leading to dis-
tinguishing vegetation types. Consequently, uneven SOC 
distribution occurs along the slope with different vegetation 
and is also caused by the anthropogenic activities of soil–
crop management. The spatial distribution of SOC in the 
forest and vineyard soils is significantly influenced by the 
slope and aspect; the highest SOC content (1.09%) was 
observed in north and north-facing soils and lowest in the 
southeast72,73. The predicted SOC mean (2.56%) was not 
significantly different from the actual SOC mean (2.24; t-
value < 1.96; P < 0.05). 
 NDVI value of 0.53 ± 0.05 indicates moderate vegetation 
due to the standing rice stubble, which is cut approximate-
ly 30 cm above the soil. The fields with litter from pine 
forests in strongly sloping (15–30%) areas also contribute 
to high NDVI. This results in a low BSI value of –0.08 ± 
0.16. An intermediate SAVI value of 0.45 ± 0.05 indicates 
neither dense vegetation nor very high soil reflection. The 
SAVI is confirmed with MSAVI, in which the soil brightness 
correction factor (L) is introduced. 
 The indices such as SI (0.44 ± 0.03), RDVI (0.43 ± 0.05) 
and OSAVI (0.43 ± 0.04) have almost the same value, indi-
cating the presence of rice stubbles. IPVI is 0.11 ± 0.01, 
which is low, indicating high soil reflection. The reflection of 
red band from the soil may be high, resulting in a larger de-
nominator (NIR + Red) value of IPVI (IPVI = NIR/(NIR + 
Red)). The RI value of 177.45 ± 54.05 indicates the pres-
ence of sufficient iron oxide in the soil. RI defines the 
redness intensity of sand-grain coating with hydrates of 
iron oxide, i.e. goethite (FeOOH) and hematite (Fe2O3)61, 
and during intense weathering, it liberates iron attached to 
clay minerals62. NDSI of 0.21 ± 0.06 improves soil infor-
mation and suppresses the impervious surface area and 
vegetation. NDWI value of –0.58 ± 0.04 within the range 
–0.3 to 0.0 indicates moderate drought (soil and vegetation) 
after harvesting of the crop, as a high SOCI value (2.95 ± 
0.48) is sensitive to SOC content64. Table 5 and Figure 3 
also present other indices such as HI (1.56 ± 0.30), CI (0.07 ± 
0.03) and EVI2 (0.47 ± 0.06). 

Effect of slope on SOC and RS indices 

The effect of slope on SOC is statistically insignificant 
due to low SOC variability (CV < 15%), which is related to a 
non-uniform sample size of each slope position. This may 
be due to the fact that the highest sample size (70%) was 
from nearly level (0–3%) and gentle slope (3–8%), while 
10% from moderate slope (8–15%), strong slope (15–30%) 
and steep slope (>30%). It followed Gabriel’s posthoc test 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 124, NO. 12, 25 JUNE 2023 1438 

Table 4. Validation of regression model-predicted SOC with actual SOC data (validation data) 

 Validation 
 

Regression models R2 RMSE 
 

MLR-stepwise 0.68 0.038 
 SOC (%) = 1.47 + 0.131 * SOCI + 0.801 * NDVI   
PLSR 0.5 0.05 
 SOC (%) = 1.59 + 0.027 * SOCI + 0.23 * NDVI + 0.143 * SAVI – 0.05 * BSI – 
  0.18 * SI + 0.0002 * RI + 0.12 * RDVI + 0.24 * SAVI – 0.33 * NDWI + 0.11 * NDSI + 0.12 *  
  MSAVI – 0.68 * IPVI – 0.02 * HI + 0.11 * EVI2 – 0.19 * CI 

  

 
 

Table 5. Descriptive statistics of SOC and remote sensing (RS) indices 2019 

Parameters Mean Standard deviation Kurtosis Skewness Minimum Maximum 
 

SOC 2.23 0.09 0.36 –0.06 1.98 2.45 
SOC (100) 2.24 0.22 7.39 –1.09 1.28 2.87 
NDVI 0.57 0.1 1.68 1.36 0.4 0.86 
SAVI 0.48 0.09 3.42 1.73 0.36 0.84 
BSI –0.16 0.27 3.27 –1.4 –1.22 0.31 
SI 0.42 0.08 4.38 –2.03 0.12 0.53 
RI 173.57 56.51 –0.12 0.27 50.85 320.18 
RDVI 0.46 0.09 4.09 1.84 0.34 0.84 
OSAVI 0.46 0.08 2.25 1.52 0.33 0.74 
MSAVI 0.48 0.1 2.91 1.69 0.35 0.85 
HI 1.37 0.59 2.71 –1.67 –0.58 2.27 
CI 0.04 0.09 5.66 –2.36 –0.29 0.13 
NDWI –0.6 0.06 0.72 –1.01 –0.77 –0.5 
IPVI 0.11 0.02 3.32 1.37 0.09 0.18 
NDSI 0.21 0.06 –0.61 –0.08 0.07 0.34 
EVI2 0.5 0.12 4.65 1.98 0.36 1 
SOCI 3.43 1.4 10.24 2.83 1.81 11.02 

 
 

 
 

Figure 5. a, Actual (field data) soil organic carbon (SOC; %) content at varying slope. b, MLR-stepwise-predicted and PLSR-predicted SOC (%). 
 
 
(P > 0.05; r = 0.14) analysis (Figure 5 and Table 6). Wild-
ing74 reported similar results, while, Hamzehpour et al.75 
found low SOC variation in slope attributed to a small sam-

ple size taken from <8% slopy agricultural land. There 
was a positive correlation between slope and SOC due to 
the surrounding pine forests, with similar findings reported 
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by Singh and Benbi20, and Wang et al.76. A small SOC value 
(1.24%) at the lower slope (0–8%) was observed com-
pared to that at other slopes, i.e. 2.85% at the steep slope 
(15–30%). Similarly, Singh et al.77 found that SOC con-
tent at 32% slope land (Pyllun) > 12% slopy land owing to 
the presence of pine trees which contain waxy-coated, 
needle-shaped leaves that undergo slow decomposition re-
sulting in high particulate organic matter (POM). The 
SOC content at 32% slope had decreased from the uppermost 
part of the slope (L1) to the lowest part of the slope (L3)78. 
The highest POM content was observed at 32% slope of 
Pyllun (rice–fellow) than in the intermountain valley 
(Bhoirymbong). Similarly, Singh and Benbi20 also found 
high SOM at hilltops (62% slope) > backslope and bottom-
land (42%) and middle slope (9%). However, other forms 
of SOC, such as light fraction organic matter, dissolved 
organic carbon (DOC), microbial biomass carbon (MBC) 
and hot water soluble carbon, were high at the lower slope 
(i.e. 6%) positions and minimum at 32% slope of Paham 
(Nongpoh)78. 
 High values of vegetation indices such as SOCI, NDWI, 
NDVI, SAVI, OAVI, MSAVI, EVI2 and IPVI were observed 
at higher slope positions due to quick growing pastures after 
harvesting of rice along with the effect of surrounding 
forests. However, soil base indices, viz. spectral colour in-
dices like BSI, CI, HI, NDSI, RI and SI have high values soil 
at lower slope (0–8%) due to soil exposure after crop har-
vested (Figure 3). Wang et al.76 reported low index values  
with low SOC content in agricultural areas with bare soil 
and sparse vegetation. 
 
 
 
Table 6. Multiple comparisons of slope and SOC (dependent variable)  
 using post-hoc Gabriels’s test (P = 0.05) 

 
Slope (I) 

Slope class 
(J) 

Mean difference 
(I–J) 

 
Standard error 

 
Sigma 

 

1 2 0.01131 0.06251 1 
 3 –0.05387 0.09043 1 
 4 –0.10854 0.10739 0.969 
 5 –0.08187 0.16825 1 
2 1 –0.01131 0.06251 1 
 3 –0.06518 0.07612 0.985 
 4 –0.11985 0.09566 0.811 
 5 –0.09318 0.16101 0.998 
3 1 0.05387 0.09043 1 
 2 0.06518 0.07612 0.985 
 4 –0.05467 0.11584 1 
 5 –0.028 0.17377 1 
4 1 0.10854 0.10739 0.969 
 2 0.11985 0.09566 0.811 
 3 0.05467 0.11584 1 
 5 0.02667 0.18317 1 
5 1 0.08187 0.16825 1 
 2 0.09318 0.16101 0.998 
 3 0.028 0.17377 1 
 4 –0.02667 0.18317 1 

Note: 1, Nearly level (0–3%); 2, Gentle slope (3–8%); 3, Moderate slope 
(8–15%); 4, Strong slope (15–30%) and 5, Steep slope (>30%). 

 SOCI (r = 0.87) and NDVI (r = 0.72) were strongly corre-
lated with SOC (r > 0.7) as NIR is associated with carbon–
hydrogen bonds of SOC79. The indices such as SAVI (r = 
0.38), OSAVI (r = 0.58), MSAVI (r = 0.35), NDSI (r = 
0.46) and EVI2 (r = 0.34) were moderately correlated (0.3 < 
r < 0.7) with SOC, while BSI (r = –0.58), SI (r = –0.40), 
HI (r = –0.43), CI (r = –0.42), NDWI (r = –0.69) and IPVI 
(r = –0.48) were negatively correlated with SOC content. 
RI (r = –0.15), RDVI (r = 0.11) and slope (r = 0.14) were 
poorly correlated (r < 0.3) with SOC (Table 7). Moderate 
to strong correlation is attributed to strong absorption in 
red and NIR bands, similar to the findings in earlier stud-
ies49,80. The darker soil colour having high SOC is strongly 
correlated with soil colour indices. This result is in line 
with the findings of Son et al.81 and Nuarsa et al.82. 

Model prediction and validation 

Among the selected statistical approaches, the performance 
of MLR-stepwise (R2 = 0.87 and RMSE = 0.026) was found 
to be the best compared to PLSR (R2 = 0.71 and RMSE = 
0.05) and PCA-R (R2 = 0.27 and RMSE = 0.11) (Table 8). 
Table 4 and Figure 6 depict field validation results using 
the actual field data. Among the indices as dependent varia-
bles, NDVI and SOCI were strongly correlated with SOC 
irrespective of slope position (r ≥ 0.70), whereas other in-
dices were moderately correlated with SOC content (0.3 < 
r < 0.7). With the MLR-stepwise method, predictor variables 
were selected based on the significance test. This process 
was run until no variable could be selected or rejected68. 
Finally, the stage was reached where most of the influencing 
factors of NDVI and SOCI were included in the model for 
SOC prediction under varying topographical conditions. 
Studies have reported better performance of MLR-stepwise 
over the PLSR method, where the inclusion of multicolline-
arity variables in the regression model reduces its perfor-
mance70,76. 

Change detection of SOC 

The MLR-stepwise model was used for SOC change detec-
tion for 10 (2009–19) and 20 (1999–2019) years. About  
–0.17% and –0.09% decrease in SOC was observed during 
the past 10 and 20 years respectively (Table 9 and Figure 
7). Traditional farming practices without using organic or 
inorganic nutrient sources coupled with a monoculture 
farming system may be the reason for declining SOC over 
time. Meghalaya received less rainfall (1205 mm) during 
2009 than the average annual rainfall of 2173 mm (refs 83, 
84). The less decomposition and leaching loss with low 
precipitation may be attributed to higher SOC content in 
2009 under similar land management85. In 1999 and 2019, 
increasing precipitation and temperature enhanced the decom-
position rate lowering SOC concentration86. Laxminarayana 
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Table 7. (Left) Correlation between SOC and RS indices as well as slope. (Right) Effect of  
  slope on SOC and RS indices 

Slope SOC Slope 1–3% 3–8% 8–15% 15–30% >30% 
 

SOC 1 NDVI 0.56 0.53 0.66 0.8 0.73 
NDVI 0.72** SAVI 0.48 0.45 0.55 0.71 0.68 
SAVI 0.38** BSI –0.14 –0.08 –0.39 –0.72 –0.36 
BSI –0.58** SI 0.45 0.44 0.37 0.22 0.26 
SI –0.40** RI 193.72 174.5 189.59 119.02 65.04 
RI –0.15 RDVI 0.45 0.43 0.52 0.69 0.66 
RDVI 0.11 OSAVI 0.45 0.42 0.52 0.66 0.61 
OSAVI 0.58** MSAVI 0.47 0.44 0.56 0.74 0.69 
MSAVI 0.35** HI 1.54 1.56 0.93 –0.07 0.04 
HI –0.43** CI 0.07 0.07 –0.02 –0.18 –0.17 
CI –0.42** NDWI –0.6 –0.58 –0.65 –0.73 –0.66 
NDWI –0.69** IPVI 0.11 0.11 0.11 0.14 0.15 
IPVI –0.48** NDSI 0.21 0.21 0.23 0.2 0.14 
NDSI 0.46** EVI2 0.5 0.46 0.58 0.8 0.76 
EVI2 0.34** SOCI 3.05 3.03 4.45 6.65 4.67 
SOCI 0.87**       
Slope 0.14**       

**Correlation is significant at the 0.01 level. 
 
 

Table 8. Regression model for SOC prediction using RS variables 

Model Models R2 RMSE 
 

MLR-stepwise SOC (%) = 1.47 + 0.131 * SOCI + 0.801 * NDVI 0.87 0.026 
PLSR SOC (%) = 1.59 + 0.027 * SOCI + 0.23 * NDVI + 0.143 * SAVI – 0.05 * BSI – 0.18 *  

 SI + 0.0002 * RI + 0.12 * RDVI + 0.24 * SAVI – 0.33 * NDWI + 0.11 * NDSI + 
 0.12 * MSAVI – 0.68 * IPVI – 0.02 * HI + 0.11 * EVI2 – 0.19 * CI 

0.71 0.054 

PCA-R SOC (%) = 2.22 + 0.06 * PC1 + 0.0078 * PC2 0.27 0.11 

Note: MLR-stepwise, Multiple linear regression-stepwise; PLSR, Partial least square regression; PCA-R, Principal component 
analysis regression. 

 
 

 
 

Figure 6. Model accuracy by plotting between actual SOC (%) and MLR-stepwise and PLSR-predicted SOC (%). 
 
 
and Bharati87 reported 2.16–2.77% SOC in rice fields in 
2009. The fine, loamy texture had higher SOC88. 

Conclusion 

Challenges of SOC quantification with limited laboratory 
facilities and the complexity of hilly terrain can be over-

come by adopting advanced geospatial tools and techniques. 
Spatial maps of SOC and quantifying its changes due to 
long-term cultivation (rice–fallow) will be beneficial for 
managing soil fertility in the study area. The remote sensing-
based indices could be promising variables for SOC predic-
tion and preparing temporal SOC distribution maps. The 
terrain complexity of the hilly region creates micro-cli-
matic zones resulting in uneven vegetation and biomass 
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Figure 7. Mapping of SOC for 2019, 2009 and 1999 using MLR-stepwise and PLSR models. 
 
 

Table 9. Changes of SOC during the last 10 (2009–19) and 20 (1999– 
  2019) years 

One-sample test 
Test value (2019-predicted SOC) = 2.56 

 

Year t value Degree of freedom (df ) Sigma (two-tailed) 
 

2009 1.292 4 0.266 
1999 1.023 4 0.364 

 
 
accumulation. Under such conditions, remote sensing-based 
information along with digital elevation models is the 
right combination for SOC prediction. 
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