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The large influx of freshwater and mixing of different 
water masses make simulating salinity challenging for 
the Bay of Bengal (BoB) region. This study analyses the 
variability of the simulated sea surface salinity (SSS) 
using models present in the Coupled Modal Intercom-
parison Project Phase 6 (CMIP6). We collected data 
for 37 models from CMIP6 and validated them against 
the Argo (2005–14) and Aquarius (2011–14) data. Based 
on the skill scores, we narrowed down our search to 
one CMIP6 model, viz. CIESM. This model was used 
to study the freshwater spread (FWS) in BoB during 
different seasons. We found that the correlation between 
pH and FWS was appreciable. The CIESM model was 
then used to project the future trends for 10 years for 
the tier-1 scenario. The trend analysis of future projec-
tions revealed a positive trend in SSP1-2.6, with a decrea-
sing trend in SSP2-4.5 and SSP5-8.5. 
 
Keywords: Climate models, freshwater spread, river 
fluxes, skill score, trend analysis. 
 
SALINITY is a key factor in the physical, chemical and bio-
logical factors of the ocean. Previous research has docu-
mented/demonstrated that the warming climate is altering 
the saltiness of the world’s oceans, the high-salinity regions 
have become more saline since 1950, whereas the low-sali-
nity regions have become more fresh. The changes in salinity 
patterns are likely affected by anthropogenic activities, and 
the large-scale effects will become more pronounced by 
the current 21st century1. The oceans hold 97% of the 
world’s water; 80% of the rainfall received drains into the 
ocean; and the oceans absorb 90% of the energy released 
by global warming. 
 The Bay of Bengal (BoB) receives a large amount of 
freshwater from precipitation and rivers, resulting in low 
salinity values, especially in the northern region2. Surpris-
ingly, BoB has not yet been formally/extensively studied. 
The variation in salinity is associated with the physical 
and biological properties of the waters in the region. Due to 
the large freshwater influx, the BoB region becomes highly 
stratified3, allowing the creation of a barrier layer between 

the mixed and isothermal layers. Researchers have exten-
sively examined the barrier layer in the surface-layer tem-
perature inversion studies for this region4,5, and it has been 
well simulated in the paper6. The formation and depth of 
the barrier layer for BoB are well discussed in that paper6. 
The formation of a barrier layer plays an important role in 
air–sea interaction processes. This layer acts as a heat barrier 
in the vertical heat exchanges between the mixed layer and 
thermocline, keeping the sea surface temperature (SST) 
high. The barrier layer plays a central role in keeping the 
BoB region less productive, by suppressing nutrients from 
the subsurface to the surface layers. The impact of seasonal 
rivers on the hydrographic characteristics of BoB has been 
studied7,8. In a modelling study9 SSS decrease of more 
than 3 PSU was observed during the summer monsoon with 
an increase of SST by 1.5°C in the region, contributed 
primarily by rivers. With the inclusion of rivers, while 
simulating SSS in BoB, a noteworthy improvement in 
near-surface salinity, stratification, mixed-layer depth and 
barrier layer thickness was observed. This improvement in 
salinity-driven characteristics indicates the importance of 
rivers in this region. 
 The Coupled Model Intercomparison Project Phase 6 
(CMIP6) of the World Climate Research Programme 
(WCRP) provides an opportunity to study several ocean 
general circulation models (OGCMs) simulated over the 
globe. The aim of this study is to provide a suite of models 
that can better replicate the oceans and climate. The Global 
Integrated Assessment Modelling (IAM) community has 
developed a family of different shared socio-economic 
pathways (SSPs) for analysing the climate change impacts 
of the CMIP models. CMIP6 models with natural and anthro-
pogenic forcing provide historical simulation 1850–2014, 
as well as tier-1 and tier-2 future scenarios. CMIP6 tier-1 
SSPs consist of SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 
which are updated versions of CMIP5 representative con-
centration pathways (RCPs). 
 The effects of an increase in global mean temperature 
are already being witnessed in the melting of the Himalayan 
glaciers. This has increased the rate of freshwater discharge 
from the rivers into the oceans. The associated variations 
in SSS encouraged us to evaluate and analyse the simula-
ted SSS from CMIP6 for the BoB region (6.5°–24.5°N, 
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Table 1. CMIP6 SSS models (only the four best models are shown here) 

 
Model 

 
Centre 

 
Experiment 

Resolution 
(km) 

 

CESM2-WACCM National Center for Atmospheric Research, Community Earth System 
Model – Whole Atmosphere Community Climate Model, USA 

Historical, SSP1-2.6, SSP2-4.5, 
SSP3-7.0, SSP5-8.5 

100 

CESM2 National Center for Atmospheric Research, Community Earth System 
Model – Whole Atmosphere Community Climate Model, USA 

 100 

CESM2-WACCM-FV2 National Center for Atmospheric Research, Community Earth System  
Model – Whole Atmosphere Community Climate Model, USA 

Historical 100 

CIESM Department of Earth System Science, China Historical, SSP1-2.6, SSP2-4.5, 
SSP5-8.5 

100 

 
 
76.5°–100.5°E). This article evaluates the importance and 
applicability of studying the suitability of the CMIP6 suite 
of models for the hydrodynamic characteristics of BoB. Our 
aim was to characterize and identify the better-performing 
ones among the 37 CMIP6 models, which could emulate 
SSS for the BoB region. A comparison of each model with 
the satellite-derived SSS and the in situ salinity observa-
tions helped identify the best-performing models. These 
models were further explored to understand the historical 
trends and futuristic SSS changes for the BoB region. 
 Sustained interest in understanding the importance of 
SSS in the spread of freshwater and the pH of the waters led 
us to study freshwater spread (FWS) in BoB10. The freshwa-
ter coming from rivers spreads across the Bay in a seasonal 
manner, with local currents like the East Indian Coastal 
Current (EICC) playing a major role. In this study, we 
demonstrate that the influence of this FWS on the pH of 
the waters offers a comprehensive view of the impact of sali-
nity on the acidification of the Bay, which in turn affects 
the ecosystem in the region. The ocean acidification pre-
diction for the BoB region, as reported by Feely et al.11 
estimates pH to be below 8.0 by 2050 and below 7.8 in 
2095. One of our major confirmations is that the ocean 
acidification of BoB proceeds at a lower rate than other 
world oceans due to FWS. These findings reinforce the 
general belief that salinity is a critical factor affecting sea 
life. BoB, being a vast reservoir of a plethora of marine 
life, like shells and coral reefs, the ocean acidification 
scenario presented by Feely et al.11 concerns scientists, 
environmentalists and policymakers. Collectively, our 
findings define the importance of predicting SSS accurately 
throughout BoB. Further, we observed that changes in SSS 
had a significant impact on climate change, compared to 
controls, as evident from the CMIP6 models. 
 We have already shown in earlier works that SST plays 
a central/pivotal role in the flow dynamics of BoB12,13, 
SST is the most widely studied feature of ocean flows and 
its dynamics. In this study, therefore, the intention was to 
introduce an additional factor, viz. SSS, also plays a pivotal 
role in the ocean14 and the biological processes in BoB. In 
fact, central to the theory of geophysical fluid dynamics is 
the thermohaline flow hypothesis which states that some 
of the major drivers of currents in the oceans are tempera-
ture and salinity. 

Data and methodology 

Data 

For a better understanding of climate change, CMIP6 has 
provided state-of-the-art OGCMs (https://esgf-node.llnl. 
gov/search/cmip6/). The models chosen for this study are 
part of the ‘r1i1p1f1’ ensemble. The monthly SSS data for 
the historical (1850–2014) and tier-1 scenarios (SSP1-2.6, 
SSP2-4.5, SSP3-7.0 and SSP5-8.5) were used to analyse 
OGCMS. The probabilistic future states (till 2100) were 
projected under CMIP6 tier-1 SSPs. 
 To analyse the variability of SSS, we have used two data-
sets: Argo gridded data (http://apdrc.soest.hawaii.edu/las/ 
v6/constrain?var=204) and Aquarius OISSS gridded data 
(http://apdrc.soest.hawaii.edu/las/v6/constrain?var=12924). 
The development of Argo started in 2000; it is an interna-
tional programme providing near real-time estimation of 
ocean state variables. These floats provide different seawater 
variables (e.g. salinity, temperature, chlorophyll). The Argo 
product has been used to improve our understanding of 
seawater salinity along with satellite data over the Indian 
Ocean. The resolution of the original Argo data is 1° × 1°. 
In this study, we used the monthly gridded (linearly inter-
polated) SSS from the Argo data, from 2005 to 2014. Aquar-
ius satellite is a part of the Mars Pathfinder mission of 
NASA, USA, which provides global monthly SSS. For 
this study, we used the Aquarius data till 2014. 

Methodology 

The reference datasets and CMIP6 models have different 
resolutions, which were converted to the common 1° × 1° 
resolution (using the nearest-neighbour interpolation 
method) for comparison and ranking of the models. Table 
1 provides a list of CMIP6 models (4 out of a total of 37) 
considered in this study. The monthly mean simulation 
output data were examined for two periods, viz. 2005–14, 
and 2011–14. The first simulation dataset corresponded to 
the Argo data (2005–14), while the other dataset correspond-
ed to the Aquarius data (2011–14). Similar datasets have 
been used for validation and to calculate biases in BoB (ref. 
15). Large root mean square deviation (RMSD) and negative 

https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/
http://apdrc.soest.hawaii.edu/las/v6/constrain?var=204
http://apdrc.soest.hawaii.edu/las/v6/constrain?var=204
http://apdrc.soest.hawaii.edu/las/v6/constrain?var=12924).


RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 124, NO. 11, 10 JUNE 2023 1292 

 
 

Figure 1. Taylor diagram showing the performance of the CMIP6 models with (a) Argo and (b) Aquarius data. 
 
 
bias were observed along the Sumatra coast and northern 
BoB in the Aquarius dataset. The SSS products from the 
Aquarius satellite have been extensively confirmed with 
in situ observations in the Indian Ocean16. The Argo data 
SSS, evaporation (E) and precipitation (P) have been used  
to analyse ocean circulation and its impact on climate 
change17. 

Results and discussion 

Inter-comparison of CMIP6 models with reference  
datasets 

We made a temporal comparison between the family of 
CMIP6 models and the observations. We have calculated 
the M-score and Willmott skill score for all 37 models with 
Argo and Aquarius data. The Taylor skill score was calcu-
lated for the CMIP6 models with the observations and the 
Taylor diagram was drawn. 
 
Argo data: We compared the CMIP6 models with the 
monthly gridded Argo data for 2005–14. Figure 1 a and 
2 a show the comparison between the CMIP6 models and 
the Argo data using the Taylor diagram and Taylor skill 
score. GISS-E2-1-G (model no. 24; Figure 1) was found to 

be the best model, while MCM-UA-1-0 (model no. 14; Fig-
ure 1) was the worst CMIP6 model in this region. GISS-
E2-1-G exhibited a correlation of 0.67, while MCM-UA-1-
0 showed a negative correlation (–0.07) with the Argo data. 
The RMSE and standard deviation (STD) of GISS-E2-1-G 
were found to be 0.21 and 0.20 respectively, while MCM-
UA-1-0 showed RMSE and STD values of 0.37 and 0.22 
respectively. Though correlation factor (CF) and percent-
age bias (PB) rated both the models as ‘good’ (2.8 and 
2.4) and ‘excellent’ (2.4 and 2.0), the mef for GISS-E2-1-G 
was in the ‘good’ range (0.44), but for MCM-UA-1-0 I fell 
in the ‘poor’ category (–0.73). The MCM-UA-1-0 model 
showed better AAE (0.69 for MCM-UA-1-0 and 0.80 for 
GISS-E2-1-G) and AE (0.68 for MCM-UA-1-0 and 0.80 
for GISS-E2-1-G) when compared with GISS-E2-1-G. 
The values of absolute average error (AAE) and AE for both 
models were almost similar, which indicates that these 
models overestimate SSS in the region. 
 Figure 2 b shows the M-score skill of the CMIP6 models 
with the Argo data. This skill provided another best model 
(CIESM), while MCM-UA-1-0 remained the worst model. 
This model showed a negative M-score, which is rare, indi-
cating this to be one of the least suitable models for simu-
lating SSS. The CIESM model showed a correlation of 
0.58 with the Argo data and RMSE of 0.28. The CIESM 
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Figure 2. Skill score bar plots of CMIP6 models for three skills with Argo data: (a) Taylor skill score, (b) M-score and (c) Willmott skill score. 
 
 
model showed CF (0.81) and PB (0.27) values in the ‘excel-
lent’ range. AAE and AE for the CIESM model were 0.23 
and 0.09, but mef was poor. 
 In the case of Willmott skill score, the best model was 
CIESM and the worst was ACCESS-CM2 (Figure 2 c). 
ACCESS-CM2 was poorly correlated (0.24) and had an 
RMSE of 0.29. The mef value for the model was found to 
be negative (–0.1). The model has an STD of 0.18; CF 
(10.01) rated the model as ‘poor’, but PB was in the ‘excel-
lent’ range (8.56). Both AAE and AE were 2.82 for the 
ACCESS-CM2 model. 
 
Aquarius data: Next, we compared the CMIP6 models with 
the Aquarius data for 2011–14. From the Taylor diagram 
(Figure 1 b) and the Taylor skill score (Figure 3 a), we ob-
served that CIESM (model no. 9; Figure 1) performed the 
best, while NESM3 (model no. 37; Figure 1) was the worst 

performing model. The CIESM model showed a good corre-
lation (0.90), while NESM3 was poorly correlated (0.15). 
RMSE of the CIESM model was 0.24, and the model has 
an STD of 0.13. CF (0.48) and PB (0.01) rated the CIESM 
model to be ‘excellent’, while mef (0.64) ranked it as ‘very 
good’. Although CF (1.18) and PB (1.23) rated the NESM3 
model as ‘good’ and ‘excellent’, mef (–0.01) showed the 
model to be poor. The CIESM model showed AAE of 0.19 
and AE of 0.002, while the NESM3 model showed AAE 
and AE as 0.46 and 0.40 respectively. 
 We obtained the same best (CIESM) and worst (ACCESS-
CM2) models in the case of M-score and Willmott skill 
score. CIESM was the best-rated model according to all 
three skill scores. The ACCESS-CM2 model showed a corre-
lation of 0.37, RMSE of 0.37, and STD of 0.20. CF and 
mef rated the ACCESS-CM2 model as ‘poor’, while PB 
placed it in the ‘excellent’ category. The AAE and AE 
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Figure 3. Skill score bar plots of CMIP6 models for three skills with Aquarius data: (a) Taylor skill score, (b) M-score and (c) Willmott skill score. 
 
 
values for this model were 2.91, which is high, as seen 
previously with the Argo data. 
 We chose the best model (CIESM; marked in red in Fig-
ures 2 and 3), which features at the top according to the 
highest skill scores (from the Argo and Aquarius data). 
The CIESM model was then used for spatial and future 
projections. 

Fresh plume spread 

One of the key purposes of studying the salinity spread in 
the seas is to forecast and explain the development of 
freshwater plumes. In this section, we try to introduce this 
feature and compare the difference between the CIESM 
model (as measured against the Aquarius dataset) to pre-
dict the spread of freshwater plumes from rivers into BoB. 

 Figure 4 shows the SSS distribution before and after the 
summer monsoon, which was modelled using CIESM. It can 
be seen that the freshwater plume originating in the rivers 
penetrates deep into the bay mostly after the southwest 
monsoon (SWM) rainfall (by August). The figure reveals 
that in the northern bay, these are the waters that are brought 
in by the rivers during the SWM season (June–August) 
and collected there. Post-monsoon, it penetrates southwards 
(Figure 4). 
 The subplots in Figure 4 reveal freshwater spreading 
south, from August through December, when salinity de-
creases to 31 psu (Figure 4 a, b, northeast winter). By this 
period, the northward flow becomes evident; it begins to 
move to the right at 21°N. As a result, the northward flow 
along the west Odisha/Bengal coast becomes less intense. 
At a depth of around 150 m, salinity of the water drops 
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Figure 4. Salinity contours from CIESM model for 12 months of a year. 
 
 

 
 

Figure 5. Comparison of pH for 2014 between CESM2-WACCM-FV2 and a study by Chakraborty et al.20. 
 
 
even lower, as seen from Argo profiles, from 31 psu to 
30 psu (Argo data). 
 When comparing October and September, SSS in southern 
Bay is significantly low. The MODIS images (not shown 
here), show that there is high chlorophyll content (about 
0.6 mg/l) along the coastal Bay between June and August, 
due to upwelling. During August to December, the waters 
are less saline and highly stratified, leading to less upwelling 
and hence no productivity. This is an interesting finding, 
and it could be hypothesized that freshwater and thus SSS 
are important triggers to prevent upwelling and for primary 
productivity. 
 SSS is lower in October than in August, with salinity 
reaching 30 psu across a vast section of the ocean’s surface 
in some areas (Figure 4 j, October). SWM has fully dissi-
pated and the flow in this region is now predominantly 

southwards. Winter sets in and SSS begins to increase due 
to deep convection. These results demonstrate the adequacy 
of CIESM in predicting the future of FWS in BoB. 

pH distribution 

Here we discuss the effect of SSS on pH. This is inspired 
by the work of Sreeush et al.18, in which SST and dissolved 
inorganic carbon (DIC) were identified as the main drivers 
of the seasonality of pH in the western Arabian Sea. 
Sridevi and Sarma19, observed warming and a drop in sali-
nity, which were both associated with an increase in pH in 
the eastern and southern bays throughout the year. Their 
study19 reveals that surface ocean pH and pCO2 in BOB 
are primarily controlled by the increase in freshwater input 
and deposition of air pollutants in the last two decades20. 
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Figure 6. Correlation between pH and sea surface salinity (SSS) for CESM-WACCM-FV; R2 = 0.87. 
 
 

 
 

Figure 7. pH contours for the second best model, viz. CESM-WACCM-FV. 
 

 
 Seasonal pH variation for 2014 was compared with a 
recent study21 for 2014 (Figure 5). The pH by CESM2-
WACCM-FV2 was under-simulated for the entire year 
when compared to the results of Chakraborty et al.21. During 
November–December, both pH values were similar. During 
the summer monsoon, the selected CMIP6 model and re-
gional simulation results of Chakraborty et al.21 were sim-
ilar, but the CESM2-WACCM-FV2 model predicted a lower 
pH. During the winter monsoon, the difference between 
regional simulation and the CMIP6 model was large. 
 We aimed to model the drivers of pH20,22 and explore 
the physical factors affecting the seasonality of pH for the 
North BoB region, where the main parameters were SST, 
DIC and SSS due to the influx of many rivers into the basin. 
Joshi and Warrior23 used a coupled physical and biogeo-
chemical model (ROMS + PISCES) to understand the influ-

ence of distinct drivers and mechanisms on the sea-surface 
pCO2 and air–sea CO2 flux in BoB. The most striking ob-
servation to emerge from this study was how the various 
sea surface parameters (SST, SSS, total alkalinity, DIC) 
affected the pCO2 of BoB in controlled numerical runs. 
With regard to pH, similar control runs were done. One of 
the most important findings is related to their23 numerical 
sensitivity study, which showed the correlation between 
the total pH increase and contribution due to SSS to be 
0.87 (Figure 6) for the BoB. Figure 6 is shows that like SST, 
SSS and hence FWS are the primary factors affecting pH 
in the North BoB. 
 Focusing on the observational evidence, in the premon-
soon season, the coastal North BoB gets seasonally stratified, 
and the influence of SST is to decrease the pH and in-
crease the acidity (Figure 7). It must be noted here that the 
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Figure 8. Correlation between pH and sea surface temperature (SST) for CESM-WACCM-FV; R2 = –0.63. 
 
 

 
 

Figure 9. Correlation between pH and SSS for CESM-WACCM-FV; R2 = –0.5. 
 
 

 
 

Figure 10. CMIP6 socio-economic CO2 emission scenarios (source: https:// 
carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained). 

 
 
pH contours have been taken from the second-best model 
(CESM-WACCM-FV) since the best model for SSS pre-
diction (CIESM) does not have pH data. Figure 7 shows 
that pH strongly follows FWS in various seasons. The cor-
relation between SSS and pH is interesting because of the 
enormous implications that the rivers have on the ecosys-
tem of BoB. 

 Figures 8 and 9 show the correlation of pH with SST 
and SSS respectively, in the second best model (CESM2-
WACCM-FV). These figures are plotted from the CMIP6 
model. We show here a temporal correlation between the 
variables plotted for a point close to the coast in the north-
east BoB. In Figures 8 and 9, there is a clear trend of de-
creasing pH with an increase in SST and SSS24. 

https://carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained
https://carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained
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Figure 11. CIESM model trend based on the (a) historical period, viz. 1990–2014, (b) near future (2025–50) trend, 
(e) mid-century (2051–75) trend, (h) end–century (2076–2100) trend for SSP1-2.6 socio-economic scenarios. (c) 
near-future (2025–50) trend and ( f ) mid-century (2051–75) trend and (i) end-century (2076–2100) trend for the 
SSP2-4.5 socio-economic scenarios, (d) near future (2025–50) trend, (g) mid-century (2051–75) trend and (j) end-
century (2076–2100) trend for the SSP5-8.5 socio-economic scenarios. 

 
 
Future projections 

The spatial and temporal analysis of the CMIP6 family 
historical simulations helps us narrow down our focus to 
the best model (CIESM). Figure 10 exhibits the futuristic 
CO2 emission socio-economic pathways of the CMIP6 
models considered for this study. SSP1-2.6 shows a gradual 
decline in CO2 emission, and this is expected to increase 
the global mean temperature by 1.7°C by the year 2100 (ref. 
22). The worst-case scenario (SSP5-8.5) indicates that by 
the end of this century, the temperature will increase by 
4.9°C. Here we consider the CIESM model to explore the 
future projections of SSS in the BoB region. 
 It would be beneficial to project SSS for this region of 
BoB since it strongly affects the ecosystem here. In this 
study, SSS in the BoB region is projected for the period 
2015–25. The historical data for 1990–2014 have been 
considered a reference for performing trend analysis. Fig-
ure 10 shows the trend for the three available scenarios for 
a period of 100 years. These trends help us understand the 
expected changes in the given socio-economic scenarios 
in the immediate future. 
 Figure 11 a shows spatially heterogenic historical trends 
over the BoB. It is apparent that an increasing trend in 
SSS is observed all over the region except in the northern 
bay. Evaporation, wind direction, seawater circulation, and 
changes in freshwater influx cause variations in SSS. Sridevi 
and Sarma19 observed a decreasing trend in SSS in the 
North and vice versa in the South. During the northeast 
monsoon (NEM) season, the decrease in SSS in the northern 
BoB was reported to be above 0.03/year, whereas there 

was a significant increase in SSS in the southern BoB 
(0.03/year). During the deglaciation period, the melting of 
the ice sheet resulted in the ingestion of freshwater into 
the oceans. BoB is a hub for some of the world’s largest 
rivers, which bring in large volumes of freshwater. This 
freshwater discharge impacts the seasonality of SSS. Jana 
et al.8 studied the effect of rivers in the BoB using model 
simulations. They showed an improvement of about 50–
70% in near-surface salinity, freshwater plume, stratifica-
tion by the addition of rivers. 
 The BoB basin receives a large amount of freshwater 
from several rivers with a well-defined seasonal cycle. This 
varying seasonal freshwater contributes to variation in 
SST and SSS (especially in the North). During the SWM 
season, freshwater discharge from the rivers reaches its 
peak, resulting in freshening of the bay. We observed a 
positive percentage change during SWM in all three sce-
narios (Figure 11 d–f ) in the near future. These prevailed 
in the central and northeastern regions too, with higher 
magnitudes in the north. The increase in SSS during the 
historical period intensified in the northern and northeastern 
regions. 
 The BoB region receives less freshwater during NEM 
than SWM monsoon. During NEM, freshwater from the 
northeast advects out of the BoB, along the coast, by the 
action of the EICC current system20. We observed a similar 
positive percentage change in all three scenarios in the 
near future. Figure 11 g–i shows the spatial percentage change 
for SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios. We obser-
ved a greater percentage change during NEM in the near fu-
ture. The northwestern Bay showed a pool (15°N–23°N) of 
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high negative percentage changes, formed possibly due to 
freshwater run-off from the north and northwestern rivers. 
While the rest of the bay showed a high positive percent-
age change (≈1.5%) for all three scenarios. 

Summary and conclusion 

Research has shown that accurate SSS predictions and 
variations increase the predictability of ocean climate for 
the BoB region using CMIP6 models. The historical simula-
tion of these models was compared with the Aquarius and 
Argo data. This helped in analysing the capability of the 
models to simulate SSS in the region. We selected the top 
five models based on skill scores (Taylor skill score, M-
score and Willmott skill score) using both the reference data. 
Our findings reveal that the CIESM model is the best for 
both reference data (Aquarius and Argo) and was used for 
further analysis. 
 CIESM and CASM2-WACCM-FV2 models were emplo-
yed to study FWS and pH in the Bay. As expected, SSS 
was influenced by the movement of freshwater from the 
rivers as a low-salinity plume. Also, pH in BoB was inter-
connected with SSS due to freshwater flux. Together, these 
results provide important insights into the dynamic mech-
anisms of SSS, pH and the biological life therein. 
 A CMIP6 model for studying salinity has been presented 
and shown to provide good predictions for simulating 
FWS in BoB. Such an approach was found to give good-
quality results in the prediction of derived parameters like 
pCO2, pH and the distribution of freshwater plumes. Further 
analysis showed that not obtaining the flow of these ther-
mohaline plumes (because of using other CMIP6 models) 
might sometimes lead to erroneous predictions of the bio-
logical life and ecosystem dynamics there. 
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