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Hyperspectral remote sensing is a useful technique for 
detecting spatio-temporal changes in crop morphological 
and physiological health. In order to identify the pest-
sensitive bands for rice leaf folder (RLF), the ground-
based hyperspectral data were recorded at varying 
damage levels. The first- and second-order derivatives 
were correlated with correlation coefficient r and per 
cent leaf damage. The common region identified were 
recognized as sensitive regions (508–529, 671–680, 721–
759, 779–786 and 804–820 nm). The absorption dips were 
also found using Sensitivity and Continuum Removal 
Analysis. Combining all, a total of nine spectral bands 
(518, 549, 661, 674, 678, 731, 789, 816 and 898 nm) 
were identified as pest-sensitive bands for RLF. The 
feature-selection method was employed using RELIEFF 
algorithm to find out the band combinations and bands 
518, 661 and 731 nm yielded maximum accuracy of 
81.67%. 
 
Keywords: Hyperspectral sensing, rice leaf folder, sen-
sitive spectral bands, spectroradiometer. 
 
RICE plays a vital role in India’s food security and economy. 
Among the various factors reducing the rice yield, biotic 
stress is the major one. The prevalence of disease and insect 
pests are two of the biological factors that have the greatest 
impact on rice yield1. Currently, rice farmers in India are 
exposed to health risks due to the application of large 
amounts of pesticides to prevent crop damage due to pests. 
However, crop loss due to pest attacks has increased sig-
nificantly during the last few decades. To reduce the use 
of pesticides in crop protection and make agriculture more 
environment-friendly and sustainable, early detection of pest 
damage is essential for timely pest management measures. 
This is also crucial to accurately and confidently monitor the 
location, range and severity of crop pests and diseases. 

Identifying visual symptoms has frequently allowed accepta-
ble precision assessments of crop pests and diseases2. The 
visual assessment methods, which rely on the farmers’ skill 
are overly subjective, labour-intensive and time-consu-
ming. The manual detection of crop pests and diseases 
may be replaced with an efficient remote sensing (RS) 
technique. RS can be used to track the spatio-temporal 
changes in crop morphology and physiological status due 
to pest damage over a large area in a short period. When 
employing remote sensing data to identify crop pests and 
diseases, two strategies are frequently used3,4. To examine 
the spectral changes of crop pigment, water content and 
canopy structure under the pressures of pests or diseases, 
one of the techniques uses hyperspectral spectroscopy or 
imaging. The other method uses a variety of remote sensing 
data to retrieve habitat information, such as land surface 
temperature, soil water content and crop growth, in order 
to further predict the spatial distribution of pests or diseases. 
The occurrence of pests and diseases requires suitable 
habitat conditions5–8. The ability of these technologies to 
practically direct the precise application and reduction of 
pesticides may be constrained.  
 According to estimates, diseases and insect pests cause 
farmers to incur losses to 37% of their rice production 
each year9. Among the rice leaf-feeding insects, the rice leaf 
folder (RLF) Cnaphalocrocis medinalis (Guenée), once 
regarded as a minor pest, has now attained a major pest 
status in several parts of the Indian continent, causing sig-
nificant loss to the rice crop. It causes visible damage to 
the rice crop by folding leaves and scraping off the green 
mesophyll tissue. Numerous rice leaves are defoliated or 
their chlorophyll removed by RLF larvae, which prevents 
photosynthesis. Frequent feeding results in the green leaves 
turning yellow, curled, or stunted10. The larvae feed by 
scrapping off the green mesophyll tissues within the folded 
leaves after folding the leaf margins lengthwise. This feeding 
results in a narrow, horizontal white stripe. Membranous 
patches appear as a result of the injury. Significant loss in 
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Figure 1. Data recording site. 
 
 
leaf chlorophyll and carotenoids occurs due to RLF infes-
tation11. Majority of early second-instar larvae are gregarious 
in nature. From the late second instar stage, the larva feeds 
on the folded leaves and solitude. The loss in yield due to 
the leaf folder outbreak is between 30% and 80% (ref. 12). 
Although they can emerge at any point in the life cycle of 
the rice crops, leaf folder infestations tend to be more preva-
lent during the reproductive and ripening periods13. 
 The information-rich hyperspectral (HS) data comes with 
challenges such as information redundancy removal and 
optimal information identification. Spectral band selection 
depends on the input data properties and criteria defined to 
discriminate the most optimal feature subset of bands. 
Identification of the most informative spectral bands in the 
HS data relies on statistical methods like partial least squares 
in conjunction with techniques like correlation coefficient 
analysis, elimination of non-informative variables, stepwise 
regression variable selection and exhaustive band combi-
nation14. Most works in band selection associated with HS 
RS are related to classification problems, while relatively 
fewer works deal with regression problems considering 
vegetation characteristic properties. Among six types of 
HS band (feature) selection methods for classification prob-
lems, viz. ranking-based, searching-based, clustering-based, 
sparsity-based, embedding learning-based and hybrid 
scheme-based, the sparsity-based methods performed best 
in terms of accuracy, but ranking-based methods were more 
suitable for large HS datasets due to low complexity15. 

Feature selection methods are also classified based on 
search organization, sub-setting and evaluation methods 
like filter, wrapper and embedded methods16. Filter methods 
are shown to be faster and better suited to high-dimensional 
datasets. Estimation of the number of bands for band selec-
tion is a challenge as well because less number of bands 
will not allow enough spectral information to be preserved 
within a selection, whereas more bands cause band redun-
dancy. 
 Although a few researchers primarily collected indoor- or 
field-HS data using ground-based spectroscopic sensors to 
study the viability, sensitive bands and usable spectral in-
dices for identifying agricultural pests and damages7,8, stud-
ies on RLF are meagre. Hence, the present study aimed at 
identifying the RLF-sensitive electromagnetic spectral bands 
from the optical spectral region to assess pest-infested 
crop areas in the targeted location. 

Materials and methods 

Study site 

For the present study, an experiment was conducted at the 
ICAR-National Rice Research Institute (NRRI), Cuttack, 
Odisha, India (20.45°N, 85.93°E) during the rainy season 
of 2019 to generate different levels of leaf folder damage 
in randomized block design with four replications over 
rice crop (Figure 1). Insect occurrence is subject to suitable 
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Table 1. Different levels of rice leaf folder infestation at National Rice Research  
  Institute based on Standard Evaluation System (SES)18 

 
Crop stage 

 
Scale 

 
Damaged leaves (%) 

Larvae released per  
microplot 

Leaf damage (%)  
in the microplot 

 

Vegetative 0 No damage   0  0 
 1  1–10  10  4 
 3 11–20  20 17 
 5 21–35  40 34 
 7 36–50  60 48 
 9 51–100 100 86 

 
 
weather parameters, as they regulate the presence of pests 
in the field. Weather parameters are known to have a signifi-
cant impact on the occurrence, growth and development, and 
population build-up of insect pests in crop ecosystems, 
and thus on the extent of crop damage and yield loss. Be-
fore predicting the presence of pests, it is necessary to 
know the relationship between the prevalence and accu-
mulation of various insect pests and their natural enemies 
and weather parameters17. 

Climatic conditions of the study site 

The NRRI research farm has a subtropical climate with hot, 
wet summers and cool, dry winters. The weather conditions 
did not differ substantially during the study period. The 
total rainfall was 2292.5 mm during 2019–20 (July to De-
cember). The average sunshine hours per day was 4.57 h 
in 2019–20 (July to December). The average relative humi-
dity was about 81.42%. Maximum, minimum and average 
temperatures ranged from 21.6°C to 36.2°C, 11.0°C to 
27.3°C and 17.5°C to 30.15°C respectively, during the study. 

Test insect 

Leaf folder colony was maintained on the susceptible rice 
variety Taichung Native 1 (TN 1) under greenhouse con-
ditions (27° ± 5°C temperature and 70% ± 10% relative 
humidity). Ten adult pairs were released separately for 
oviposition on 20- to 25-day-old TN 1 plants covered with 
mylar cage (75 cm height and 30 cm diameter). Honey solu-
tion (25%) was provided as a source of food for the adult 
moths. They lay eggs singly or in rows and mostly concen-
trated at the tip of the leaves. Potted TN 1 plants with eggs 
were separated and kept for further development. Eggs 
hatched in 4–5 days with 90% viability. Fresh TN 1 plants 
were provided as and when necessary for the transfer of 
larvae. Neonate and third-instar larvae used in the present 
study were taken from this stock culture. 

Experimental set-up 

Twenty two-day-old rice seedlings of TN 1 rice variety 
were transplanted in microplots (1 m × 1 m) with six levels 

of infestations (Table 1). The recommended dose of ferti-
lizers was applied following standard agronomic practices 
to raise good crops. The experimental microplots were cove-
red with nylon nets to protect the plants from other non-
target pests. Variable numbers of third-instar larvae of RLF 
were released in the microplots for the desired level of leaf 
folder damage. The International Rice Research Institute’s 
(IRRI) Standard Evaluation System (SES) was followed18. 
The whole flag leaf area of rice plants was considered as 
100%; if one-fourth area was damaged, it was considered 
as 25%. If half the flag leaf area was damaged, it was con-
sidered as 50%, and so on. 
 Based on the visual symptoms on leaves (Figure 2), the 
sampled plants were graded into five levels of infestation, 
starting from score 0 (healthy), score 1 (low infestation), 
to score 9 (severe damage) (Table 1). In addition, using a 
graphical method, the percent leaf damage for various 
samples was calculated from RLF scale 1 as 4. It significantly 
increased as the damage level increased, reaching 86% for 
the RLF scale 9 (ref. 19). 

Data collection and pre-processing 

A portable spectroradiometer (FieldSpec3, Analytical Spec-
tral Devices (ASD), Boulder, CO, USA) was used to record 
the spectral reflectance of rice crops with differential leaf 
folder damage at 1 nm intervals from 350 to 2500 nm. The 
instrument was remotely connected with ASD software 
installed in a laptop, which captured the reflectance data. 
Before recording the reflectance data from the rice leaves, 
the instrument was calibrated using a white reference panel 
named (Spectralon; Labsphere, Inc., North Sutton, NH, 
USA). The sensor’s probe fitted in the pistol grip was kept 
at the height of about 50 cm above the leaf surface. Observa-
tions from all microplots were made in bright sunshine 
hours (often between 10.00 and 14.00 h) from fixed sites20. 
The RLF often damages the rice crop at the plant booting 
stage. Hence, in this stage, spectral reflectance from the mi-
croplots was recorded for each waveband during the crop-
ping season. Before analysis, data pre-processing was done 
to remove the atmospheric noise perturbations between 
1350 and 1450, 1780 and 2000, 2350 and 2500 nm (ref. 
21). 
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Figure 2. Field photographs of leaf folder-infested sample at different levels of damage. (a) LF 
scale 1, 1–10% damage, (b) LF Scale 3, 11%–20% damage, (c) LF scale 5, 21%–35% damage,  
(d) LF Scale 7, 36%–50% damage and (e) LF scale 9, 51%–100% in accordance with the standard 
evaluation system (SES) for rice leaf folder18. 

 
 
Spectral band analysis using derivative and  
continuum removal 

The first-order derivative spectrum explains how the slope 
of the original reflectance spectrum varies with wavelength. 
Similarly, the second-order derivative (eq. (2)) determines 
the slope of the first derivative (eq. (1)), or the rate of change 
of slope of the spectrum. Accordingly, spectral derivatives 
are calculated from spectral reflectance data to reduce the 
unpredictability caused by variations in illumination or soil/ 
land reflectance22,23, and to detect the change in curvature 
of the spectral band. 
 

 d ( d )  ( ) ,
d d
y f x x f x
x x

+ −
=  (1) 

 

 
2

2
d d ) .

d ( )d
(y dy

x dxx
=  (2) 

 
When the spectral sample size is small, the first-order de-
rivative can effectively capture the identification of various 
spectral features because, on increasing the sample size 
normalization may occur, which in turn can reduce the 
power of the HS data24–26. According to several studies, first-
order derivative spectra at the red edge have two or more 
peaks which can lead to a bimodal distribution of the red 
edge positioning (REP) values that correlate to low and high 
chlorophyll (Chl) concentration27,28. As a result, REP often 
jumps at a specific Chl threshold, prohibiting the formation 
of REP and Chl predictive correlations. The distinctive 
chloride absorption spectra could be a factor in the exist-
ence of several peaks in the first-order derivative spectra29,30. 
 Derivative spectra were employed in qualitative and 
quantitative assessments of the spectral data by calculating 
the change in slope and curvature at various spectral regions. 
Qualitative data on pigment composition were generated 

based on the wavelength position of the absorption charac-
teristics in the derivative spectra. We examined how to quan-
tify the levels of healthy and RLF-damaged samples using 
second-order derivative peaks based on the change in cur-
vature of the slope. Reflectance and spectral derivative data 
from healthy and RLF samples were correlated at various 
damage levels using Pearson’s correlation method to iden-
tify the most critical bands. In the present study, the sensi-
tive spectral regions were generated using derivative analysis 
with correlation coefficient determination, and the region 
that was common to both the first- and second-order deriva-
tives with a correlation coefficient value greater than 85% 
was used to distinguish between the RLF damage from 
healthy leaf samples (Figure 3)4,31,32. 

Spectral band analysis using sensitivity analysis and 
continuum removal 

To determine the sensitive spectral regions, the sensitivity 
analysis and continuum removal analysis were performed 
using the spectral regions of interest with absorption qual-
ities. The difference in reflectance between healthy and 
RLF-damaged samples demonstrate how reflectance res-
ponds to variations in insect occurrence33. As a result, sensi-
tivity is the ratio of reflectance changes between infected 
and healthy samples to the reflectance of the healthy sam-
ple21. 
 

 d h

h
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R R
R
−
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where SS is the spectral sensitivity, Rd the reflectance of 
the RLF infested sample and Rh is the reflectance of the 
healthy sample. 
 The spectrum libraries were created after resampling, 
and the reproductive ‘ENVI’ was used to determine the 



RESEARCH ARTICLES 
 

CURRENT SCIENCE, VOL. 124, NO. 8, 25 APRIL 2023 968 

 
 

Figure 3. Flowchart of data analysis for leaf folder detection. 
 
 
spectral signatures of healthy and RLF-infested samples at 
various damage levels. Before assessing absorption proper-
ties, it is best to eliminate a general concave shape of the 
spectrum. When the least sensitive parts with the least 
payload information were deleted, the most sensitive spectral 
region was developed. To quantify absorption features in 
the spectra, the generally concave contour of a spectrum 
should be removed. The absorption dips in the sensitive 
spectral areas were then found using ENVI. This procedure, 
also known as continuum elimination or the convex-hull 
transform makes it easier to compare spectra recorded using 
different equipment or under different lighting conditions. 
The continuum is a convex hull that fits over the top of a 
spectrum and connects local spectra maxima with straight-
line segments. As the initial and final spectral data values 
are on the hull, the first and last bands of the output conti-
nuum removed data file are marked as 1.0. Equation (4) is 
a representation of the continuum equation. 
 
 Scr= S/C, (4) 
 
where Scr is the continuum removed spectra, S the original 
spectrum and C is the continuum curve. 
 When the continuum and spectra are aligned, the image 
spectrum equals 1.0, and it is less than 1.0 when absorption 
features are present. The spectral bandwidth with maximum 
absorption characteristics or dips was chosen as the best 
for continuum removal. The continuous removal method 
is critical for analysing the spectrum features of absorption 
dips. This normalization technique compares spectra ob-
tained from different samples under different lighting con-
ditions by modifying the convex continuum hull. The con-

continuum has straight sections connecting its convex hull 
along the top of the spectrum to maximize local spectra. 
Absorption feature depths were measured by fitting a con-
tinuum to vegetation reflectance spectra34. This approach 
of neglecting the bands with lesser payload information to 
identify the prominent absorption dips can thereby cause 
normalization of the band depth. Despite the fact that de-
rivative analysis gives us absorption peaks and dips based 
on the change in slope and curvature, the continuum removal 
approach scores over the derivative-based approach for 
assessing tree canopy biochemical characteristics utilizing 
airborne imaging spectrometry data35. 
 In the present study, hyperspectral signatures of healthy 
and infested RLF samples were evaluated using a non-ima-
ging spectroradiometer. Total 600 samples (300 for train-
ing and 300 for testing) with 50 samples each of healthy 
and RLF at all damage scales were used to find the best 
possible bands responsible for the detection of RLF using 
MATLAB. To reduce the data redundancy, the RELIEFF 
algorithm was used36. This technique has the advantage of 
appropriately estimating the quality of features with strong 
relationships. 
 Using RELIEFF, the significant and most relevant wave-
lengths and two band normalized changes from 400 to 
900 nm describing the impact of the pest were retrieved 
from the dataset37. The optimally weighted combination of 
a single wavelength and a normalized wavelength difference 
was sought to determine the best bands responsible for the 
identification of RLF. The RLF samples were identified 
with higher accuracy and sensitivity. The search algorithm 
with the best performance depended on the database and 
the evaluation function, which were used to determine the 
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Figure 4. Typical ground-based spectral signature of rice crop with different severity levels of infestation due to rice leaf folder. 
 
 
optimal feature subset for a particular database. Random 
backward sequential selection was used with at least two 
different error rate evaluation functions to determine the 
optimal set of features. As the forward selection identifies 
a weaker subset of features, the backward sequential feature 
selection method was used to find the most sensitive bands 
with higher accuracy. 

Results 

Differential damage of rice leaf folder 

The RLF damage on leaves was quantified, and the damage 
scale was determined based on the per cent leaf damage 
(Table 1). According to the SES for the leaf folder by 
IRRI, the damage was assigned as 0 (healthy) followed by 
1 (4%), 3 (17%), 5 (34%), 7 (48%) and 9 (86%) in the pre-
sent study (Table 1). The leaf damage per cent was classi-
fied using the graphical mode of analysis, calculating the 
number of grids covered when the damaged sample was 
superimposed on graph paper. This result showed that the 
rate of leaf damage per cent is directly proportional to the 
level of injury. 

Removal of noise 

As depicted in Figure 4, water vapour absorption signifi-
cantly influences spectral curves at 1350–1450, 1780–2000 
and 2350–2500 nm. Water vapour absorption generated 
several anomalous values on the curves; nonetheless, the 
effective spectral curves were flattened. After removing 
the perturbated spectral bands from the ground-measured 

spectral curve, the curve gets flattened, which helps detect 
only sensitive bands from the near-infrared (NIR) region, 
i.e. between 700 and 900 nm. Nevertheless, any difference 
in the visible (VIS) region (400–700 nm) was obtained us-
ing spectral derivative analysis (SDA). 

Identification of sensitive regions by spectral  
derivative analysis 

The reflectance value and first- and second-order derivatives 
of reflectance for all samples are associated with the leaf 
damage per cent, and the correlation coefficient (R) of leaf 
damage with the above parameters was determined (Figure 
5 a–c). The correlation coefficient against reflectance reached 
a maximum value of 60%, whereas when correlated against 
the first- and second derivatives, the correlation coefficient 
increased to more than 85%. The identification of sensi-
tive regions is based on the correlation coefficient and if 
the value exceeds 85% with some observable changes in the 
spectral curve, then the spectral region will be considered 
as sensitive subject to the commonality of the first- and se-
cond-order derivatives. Based on the aforementioned criteria, 
11 sensitive regions were identified after determining the 
correlation coefficients with the first- and second-order 
derivatives of reflectance. These sensitive regions are 508–
540, 671–680, 691–761, 782–789, 794–820, 886–900 nm 
(for the first-order derivative) and 500–529, 670–695, 
721–759, 779–786 and 804–820 nm (for the second-order 
derivative), found on the basis of correlation coefficient 
and leaf damage per cent. The common regions which were 
identified after finding the correlation coefficient between 
the first- and second-derivatives were 508–529, 671–680, 
721–759, 779–786 and 804–820 nm.  
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Figure 5 a–c. Spectral reflectance from healthy and infested leaves, and correlation coefficient (R) between (a) reflectance and per cent leaf damage,  
(b) between the first-order derivative and per cent leaf damage, and (c) between the second-order derivative and per cent leaf damage. 
 
 
Identification of central wavelength 

Spectral derivative analysis method: After identifying the 
sensitive region, the SDA was performed to determine the 
central wavelength (Figure 6 b–f ), which was then incre-
mented up to 100 nm to test for sensitivity using the un-
paired t-test. The performance of the t-test for significance 
analysis was the basis of obtaining the central wavelength. 
The healthy rice leaves showed two reflectance peaks in 
the VIS and NIR regions at 518 and 731 nm respectively 
in the first-order derivative spectral curves. The red edge 
appeared between 670 and 750 nm, and the smallest re-
flectance spectrum was 661 nm. Two dips at 816 and 898 nm 
were also found in the NIR region, which could further be 
determined as sensitive bands (Figure 6 d and e). Based on 
these findings, the variation in spectral reflectance was 
significant in different damage levels. which is obvious in 
different spectral areas (VIS, NIR and short wave infrared 
(SWIR) regions). The spectral difference in the NIR range 
was the most apparent38. Due to changes in normal soil re-
flectance and atmospheric variables, a derivative spectral 
value containing the first- and second-orders can more 
precisely portray the spectral features of healthy and infested 
rice canopies. The analytical results revealed that as the 
damage level increased, the absolute values of the derivative 
spectra decreased since the reflectance value varies for 
healthy and RLF-affected samples. The reflectance value 
for healthy samples increased in both VIS and NIR regions 
in comparison to RLF samples, indicating that the derivative 
values should decrease as infestation increases. 

Sensitivity analysis to predict sensitive bands: Sensitive 
bands are essential for hyperspectral remote sensing data 
in order to avoid data duplication, selection of useful bands 
and develop a conversion model for the prediction of vegeta-
tive indices. Hence precisely identifying the most sensitive 
bands or spectral regions is crucial. In the present study, 
sensitivity analysis and continuum removal method were 
used concurrently to identify sensitive bands and regions. 
The sensitivity analysis identifies peaks and dips, eventu-
ally predicting the sensitive band for RLF (Figure 6 a). 
The extent of shift decreases rapidly as infestation levels 
increase. The sensitivity values in the VIS and NIR regions 
of the rice leaf folder (damage score 7 and 9 respectively) 
were positive, suggesting that the reflectance of the affected 
rice with higher intensity was greater than that of infested 
rice leaves with lower intensity. The sensitivity value was 
more in the blue (centred at 501 nm) and red bands (cen-
tred at 674 nm), but less near the green bands (centred at 
549 nm). When the wavelength reached 674 nm the sensiti-
vity value was positive, suggesting that healthy rice has a 
higher reflectance value than RLF-infested rice leaves. It 
was also observed that the sensitivity curve dropped after the 
red edge zone, generating less payload information while 
ignoring more sensitive regions. 
 
Continuum removal method: Hyperspectral remote sensing 
has the ability to access vast amounts of data or thousands 
of bands. Choosing the most sensitive band, on the other 
hand, is a difficult task. As a result, data redundancy is the 
best strategy for detecting sensitive bands. Hence it is 
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Figure 6. a, Sensitivity analysis of rice leaf folder (RLF) samples for different scales of damage. b–f, Change in derivative from (b) 625 to 685 nm, 
(c) 700 to 750 nm, (d) 785 to 820 nm, (e) 870 to 900 nm and ( f ) 500 to 550 nm. 
 
 
essential to determine the most feasible bandwidth for dis-
criminating between healthy and infested RLF samples. The 
most sensitive bands that differentiate between healthy 
and RLF-infested samples were identified using SDA and 
continuum reduction. In the VIS and SWIR regions, the 
amplitude of the shift reduces rapidly with an increase in 
infestation levels. However, in the NIR region, the reflec-
tance of healthy rice samples is greater than that of RLF-
infested samples. ENVI was used to examine the spectral 
fingerprints of healthy and damaged RLF samples at varying 
levels of damage. Absorption features of all the damaged 
levels were examined against a common baseline using 
the continuum removal method, which normalizes reflec-
tance spectra from 0 to 1. The VIS and NIR regions were 

analysed to determine the absorption dips. As illustrated 
in Figure 7, there are three sensitive zones, viz. 558–743, 
780–800 and 801–830 nm, and absorption dips occur at 
678, 789 and 816 nm (Figure 7 a–c). 

Identification of sensitive bands 

Five sensitive bands were identified based on change in 
curvature using SDA; three bands were identified on the 
basis of absorption peaks using the continuum removal 
method, and two sensitive bands were identified on the basis 
of sensitivity analysis. The bands at 500–550 and 625–
685 nm were sensitive to changes in pigment, while the 
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Figure 7. a–c, Continuum removal from (a) 558 to 746 nm, (b) 780 to 800 nm and (c) 801 to 830 nm. 
 
 

Table 2. Identification of significant bands for leaf folder detection 

Method adopted Sensitive region Sensitive bands 
 

Spectral derivative analysis (SDA) 625–685 661 
 700–750 731 
 785–820 816 
 870–900 898 
 500–550 518 
Continuum removal (CR) 558–743 678 
 780–800 789 
 801–830 816 
Sensitivity analysis 400–740 549, 674 

 
 

Table 3. Combination of bands identified from SDA 

Bands Accuracy (%) Combination of sensitive bands 
 

4 78.628 518 661 731 898 
3 80.241 518 661 731  
2 73.564 518 661   
1 67.242 518    

 
 
longer red portion bands (650–750 nm) were responsible 
for changes in the leaf area index (LAI) of the healthy and 
RLF-infested samples39. Thus we can infer that the bands 
at 518 and 549 nm are responsible for carotenoid content, 
those at 661, 674 and 678 nm for anthocyanins content 
and the band at 731 nm is responsible for LAI content 
(Table 2)39,40. The regions 785–820 nm (SDA), 780–800 nm 
and 801–830 nm (continuum removal) showed sensitive 

bands (789, 816 and 898 nm), but they were neglected due 
to the presence of atmospheric water perturbations. Also, in 
satellite images, the NIR region starts from higher wave-
lengths. 

Use of feature selection algorithm to predict the best  
possible bands 

Feature selection procedures are influenced by both the 
classifier being used and the characteristics of the input 
data. These approaches call for the definition of a criterion 
that may be used to assess each feature’s quality in terms 
of its ability to discriminate among the sensitive bands. 
Then, based on some pre-established criteria, a computa-
tional technique is needed to search through the variety of 
possible subsets of bands and choose the ‘best’ subset of 
bands according to their accuracy. This study identifies 
sensitive bands from the sensitive regions, and then the 
best bands are selected using the backward sequential fea-
ture selection algorithm. Among all the machine learning 
algorithms, RELIEFF gives the best accuracy results when 
a combination of sensitive bands is used. It was found that 
the combination of bands using SDA at 518, 661 and 731 nm 
gave maximum accuracy of 80.24% (Table 3). The bands 
789 and 816 nm were neglected due to water bands which 
yielded with a single absorption dip (678 nm) identified 
using CR and its accuracy was 70.36% (Table 4). The 
combination was extended to the bands identified using SDA 
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and CR, which yielded that the combination of bands (518, 
661 and 678 nm) gave us maximum accuracy of about 
79.52% (Table 5). The RELIEFF algorithm was further 
extended to the combination of sensitive bands using SDA, 
CR and sensitivity analysis. It was found that the combina-
tion of bands at 518, 661 and 731 nm gave the maximum 
accuracy of 81.67% (Table 6). The RELIEFF algorithm 
was further extended to a combination of sensitive bands 
using SDA, continuum removal and sensitivity analysis. It 
was found that the combination of bands at 518, 661 and 
731 nm gave the maximum accuracy of 81.667%. 
 From Tables 3–6, it is clear that the combination of bands 
at 518, 661 and 731 nm yields maximum accuracy. Hence, 
these three bands could be used as the best predictors of 
RLF. 

Discussion 

Hyperspectral remote sensing provides crucial data for 
identifying rice crops affected by RLF. The higher reflection 
value of light energy for the healthy sample compared to 
the leaf folder samples in the blue and red regions of the 
visible spectrum suggests that the plant sample undergoes 
structural and photosynthetic pigment changes as a result 
of leaf folder infestation (Figure 4)41. The trend in spectral 
variations in leaf reflectance identified in this study due to 
leaf folder in rice was similar to those observed due to 
striped stem borer, leaf folder and a brown spot at different 
damage levels4,21,42–44. To ascertain pest-sensitive bands of 
RLF from the sensitive spectral region, the spectral reflec-
tance and its derivatives were estimated using Pearson’s 
correlation coefficient method (Figure 5 a–c)4,32. 
 Interestingly, the reflectance value could not yield any 
sensitive region as the correlation was around 50–60%. 
However, when the correlation coefficient was calculated 
with first- and second-order derivatives and leaf damage 
per cent, the value increased to about 90%, eventually en-
abling us to predict the sensitive regions. The spectra gener-
ated from the derivatives were less impacted and hence 
provide higher correlation coefficient compared to values 
generated from reflectance. This enabled us to identify 
sensitive regions only on the basis of derivatives and neglect 
the correlation value obtained from reflectance45. The sen-
sitive regions were found from the common regions obtained 
from both first- and second-order derivatives with distinc-
tive changes in the spectral curve. Finally, five sensitive 
regions for RLF, viz. 508–529, 671–680, 721–759, 779–786 
and 804–820 nm were obtained using SDA. The sensitive 
regions identified were predominantly confined to the NIR 
region as the cell structure of the plant was mostly affected 
due to RLF damage. The red edge region (680–750 nm) 
showed significant change both in the first- and second-
order derivatives, which proves the earlier findings that 
RLF generally reduces the chlorophyll content of the leaf 
since chlorophyll detection mostly occurs within this re-
gion46. This pattern of analysis was almost identical to 

RLF at the booting stage, where eight sensitive regions were 
identified, seven at the rice leaf level and one at the rice 
canopy level4. A similar study was carried out for RLF 
based on correlation coefficients to identify distinct bands 
sensitive to RLF infestation. Three bands, centred at 424 nm 
(r = –0.802), 758 nm (r = –0.916) and 1141 nm (r = 
–0.895) were specially chosen as the most sensitive bands32. 
Pearson’s correlation intensity curve for cotton identified 
four bands at 691, 508, 551 and 710 nm, which were found 
sensitive for thrips47. A similar finding was reported for 
brown planthopper (BPH), and the study confirmed four 
sensitive bands (764, 961, 1201 and 1664 nm)48,49. The 
sensitivity analysis also gave significant peaks and dips at 
674 and 549 nm in the VIS and NIR regions (Figure 6 a), 
which is inconsistent with the results found for rice brown 
spot21,50. 
 Despite the fact that derivative analysis gives the absorp-
tion peaks and dips based on the change in slope and cur-
vature, the continuum removal approach is considered 
superior for assessing sensitive bands based on band 
depth35. In the present study, the absorption dips (band 
depth) are found at (678, 789 and 816) nm while the bands 
789 and 816 nm were neglected due to water bands and fi-
nally 678 nm was considered as the sensitive band51. Ear-
lier researchers identified 498 and 678 nm as the sensitive 
bands for brown spot using continuum removal method21. 
Similarly, adopting continuum removal method for BPH 
485, 675 and 750 nm were identified as the sensitive bands48. 
The sensitive bands obtained study were at 518, 549, 661, 
674, 678 and 731 nm. 
 RLF infestation can be recognized by how it influences 
the physiological characteristics of rice plants using their 
spectral reflectance4. It causes foliar damage to badly affect 
the growth and nutrient apportion, causing internal dam-
age in chlorophyll pigments and tissue structure32. Hence, 
RLF damage can be clearly identified within the NIR region 
of the spectrum52. In the present study, the pest-sensitive 
bands for RLF were identified and then they were subjected 
to an accuracy-based model using RELIEFF algorithm. 
This can avoid data redundancy if the bands identified are 
in close proximity to each other, just like 674 and 678 nm in 
 
 

Table 4. Combination of bands identified from CR 

Bands Accuracy (%) Combination of sensitive bands 
 

1 70.358 678 
 
 

Table 5. Combination of bands identified from SDA and CR 

Bands Accuracy (%) Combination of sensitive bands 
 

5 70.136 518 661 731 898 678 
4 76.28 518 661 678 731  
3 79.517 518 661 678   
2 75.346 518 661    
1 67.18 518     
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Table 6. Combination of bands identified from SDA, CR and sensitivity analysis 

Bands Accuracy (%) Combination of sensitive bands 
 

9 61.328 661 674 678 731 816 549 518 789 898 
8 68.419 661 674 678 731 816 549 518 789  
7 74.374 661 674 678 731 816 549 518   
6 78.527 661 674 678 731 816 549    
5 79.428 661 674 678 731 549     
4 79.271 661 674 678 731      
3 81.667 661 731 518       
2 76.419 661 674        
1 55.38 661         

 
 
the present study. The bands 518 (green region), 661 (red 
region) and 731 nm (NIR region) identified from different 
regions of the spectra showed with maximum accuracy 
that can predict the presence of RLF which was inconsistent 
with other accuracy-based hyperspectral models53. 

Summary 

The technique of determining spectral sensitive regions 
using leaf damage per cent and Pearson’s correlation coef-
ficient yields a strong base similar to the outcomes men-
tioned in this study. The results suggest that hyperspectral 
data acquired remotely may be used to evaluate leaf folder 
damage in rice grown in field conditions at the booting 
stage. The VIS and NIR regions constitute majority of the 
sensitive bands at 661, 549, 674, 731, 898, 518, 678, 789 
and 816 nm. Continuum removal method helped find the 
sensitive bands as it gave the absorption dips in a specified 
bandwidth. Feature selection approach gave the most ac-
curate combination of bands (518, 661 and 731 nm) which 
could easily predict the presence of RLF. Future research 
using satellite data obtained from aircraft or satellite plat-
forms is necessary to extend this study to the full field or 
landscape level. Pointing out hotspots on the satellite image 
with specific coordinates could help find samples affected 
by leaf folder infestation. Hence, identifying hotspots in 
satellite imagery can result in enhanced production and the 
use of the right amount of pesticides. This will be benefi-
cial to scientists, researchers and the farming community. 
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