Weeds are likely to show more resilience and adaptation to rising carbon dioxide (CO₂) concentration and temperature than crops because of their diverse gene pool and greater physiological plasticity. In agroecosystems, C₃ and C₄ plants exhibit varied responses to elevated CO₂ (eCO₂) and temperature (eTem), which can impact the crop–weed competition and efficacy of herbicides. Most C₃ plants respond positively to eCO₂ by increasing their photosynthetic rate and biomass production. Weeds compete with crops for nutrients, water and light, and considerably reduce yield and quality of the produce. Hence more attention is needed on crop–weed interaction and management under changing climate to ensure sustainable agricultural production. This study emphasizes the impacts of climate change on crop–weed interaction, herbicide efficacy and weed flora shift, and also highlights the research gaps for further studies.

Keywords: Carbon dioxide concentration, climate change, crop–weed interaction, elevated temperature, herbicide efficacy, weed flora shift.

WEEDS are one of the most significant biotic constraints in agriculture. They not only reduce crop productivity by competing with crop plants with major inputs (nutrients, moisture and solar radiation), but act as alternative hosts for insect-pests and disease-causing pathogens. Climate change along with greenhouse gas (GHG) emission in the atmosphere has become a major constraint on agriculture and pest dynamics. Among different pests, weeds are likely to react directly to elevated carbon dioxide (eCO₂) levels in the Earth’s atmosphere. Concentration of CO₂ in the atmosphere has risen to 419.05 ppm in 2021 (ref. 2). It may exceed 600–700 ppm by the end of the 21st century. Temperatures are estimated to have risen by 0.1–0.3°C per decade worldwide since pre-industrial times and projected to increase by 1.1–6.4°C by the end of the 21st century. Temperature and CO₂ shifts are likely to have major direct (CO₂-induced growth) and indirect (climatic variability) effects on weeds, influencing the balance of crops–weeds or contributing to weed invasion. In order to assess the vulnerability of agricultural production in different parts of the world, a better understanding of the potential interactions between crops and weeds in the context of climate change is necessary.

Weeds appear to be more genetically diverse and physiologically flexible than crops, and adapt rapidly under diverse environmental conditions. The effects of climate change are projected to enhance weed competitiveness, resulting in larger output losses if the weeds are not properly controlled. Climate change, particularly eCO₂, is likely to favour yield and quality of C₃ crops. By 2050, higher CO₂ levels are anticipated to improve food production up to 13% (ref. 8). However, the beneficial effects of eCO₂ on crop performance are negated by the adverse impacts of concomitant temperature rise for most food crops. On the contrary, eCO₂ causes partial stomatal closure, resulting in increased plant tissue temperature which has a detrimental impact on plant growth and production. Other directly related issues with climate change, such as irregular rainfall patterns and high temperature may impair agricultural output and quality.

Climate change may cause global range expansion (migration or introduction into new regions), changes in the life cycle of species, and population dynamics in weedy vegetation. Weed migration will lead to differences in the structure and composition of weed populations in natural and managed ecosystems. Under the changing climate scenario, there are three distinct shifts in weedy vegetation (range, niche and trait shifts), occurring at different scales (landscape, community and population scales). Herbicides are the best tools to manage agricultural weeds and increase agricultural productivity. eCO₂ and elevated temperature (eTem) can alter herbicide efficacy by affecting the time of weed seedling emergence, stomatal conductance, absorption, translocation and metabolism.

Climate change will bring about changes in the weed population and their phenology. This may allow certain non-potent weeds to dominate weed abundance. Apart from geographic distribution, climate change may influence the weed population biology, enabling them to relocate to new places at greater altitudes and latitudes. Many species of weeds can expand their range and spread into new areas. Witchweed (Striga spp.), has been proposed to expand its geographic range and will have several adverse consequences. Information about the impact of climate change on weeds and weed management is sparse. In this study,
we analyse the effects of climate change on crop–weed interaction, weed flora shift and efficacy of herbicides.

Impact of climate change on weed growth and biomass

Impact of elevated CO$_2$

The eCO$_2$ generally enhances the performance of C$_3$ plants, whereas C$_4$ plants show less response21. Many studies have suggested that eCO$_2$ positively impacts the vegetative growth of C$_3$ in comparison to C$_4$ plants1. Under eCO$_2$, several important C$_3$-weeds like wild oats (Avena ludoviciana), blistering ammannia (Anmannia baccifera Linn.), bacoanweed (Chenopodium album L.), littleseed canarygrass (Phalaris minor Retz.), etc. show decreased stomatal aperture and improved water-use efficiency1,22, thereby making them more hostile and difficult to track. Ziska and Goins38 suggest that broadleaf C$_3$ weeds are better selected at eCO$_2$ levels.

Several studies reported that C$_3$ weeds like wild oats, wild poinsettia (Euphorbia geniculata Ortega)23, weedy rice (Oryza spp.24), smooth chaff flower (Alternanthera paronychoides A. St.-Hil)25, P. minor, bur clover (Medicago denticulata Willd.) and grass pea (Lathyrus sativus L.24,26, C. album29, spreading dayflower (Commelina diffusa Burm. f.27), Parthenium hysterophorus28, thistle (Cirsium arvensis L.), velvetleaf (Abutilon theophrasti Medic), Italian ryegrass (Lolium multiflorum Lam.), wild buckwheat (Polygonum convolvulus L.), bindweed (Convolvulus arvensis L.), cocklebur (Xanthium strumarium L.), couch grass (Elymus repens L.) and cheatgrass (Bromus tectorum L.) showed enhanced growth and photosynthesis under eCO$_2$ (refs 7, 8, 29–32).

However, in C$_4$ weeds, namely kochia (Kochia scoparia L.), Johnson grass (Sorghum halepense L. Pers.), goosegrass (Eleusine indica (L) Gaertn)11,33, barnyardgrass (Echinochloa crus-galli L.), large crabgrass (Digitaria sanguinalis L.), redroot pigweed (Amaranthus retroflexus L.) and bernmadagrass (Cynodon dactylon (L) Pers.), the rate of photosynthesis and growth significantly reduced at eCO$_2$ (refs 34–38).

Impact of elevated temperature

At eTem, weeds with a C$_4$ pathway have a competitive advantage over C$_3$ crops39. The C$_4$ plant species are more adapted to heat stress and may induce stimulation of meristematic region, quick growth of canopy and root proliferation at eTem (ref. 12). Photosynthesis and growth are enhanced in various C$_4$ weeds like K. scoparia, S. halepense, E. indica11,33, E. crus-galli, D. sanguinalis, A. retroflexus and C. dactylon at eTem (refs 34–37).

Similarly, photosynthesis and growth of several C$_4$ weeds like A. fatua, C. album, C. arvensis, A. theophrasti, L. multiflorum, P. convolvulus, C. arvensis, X. strumarium, E. repens and B. tectorum are reduced at eTem (refs 4, 6, 29, 31, 32).

Interactive effects of elevated CO$_2$ and temperature

Plant response to CO$_2$ and temperature interaction effects is complicated40. Some studies indicated that low or high temperature reduces CO$_2$-induced growth41, while others revealed that eCO$_2$ can enhance crop tolerance to severe temperatures42. eCO$_2$ levels have been suggested to ameliorate the rate of sub-optimal temperature on plant growth43 and other sources of stress44. eTem effects on quack grass (Elyrigia repens L.) were strengthened by eCO$_2$ (ref. 44).

The productivity in rice (C$_3$ crop) may be improved relative to barnyard grass (Echinochloa glabrescens Munro ex Hook. F.) (C$_4$ weed) with eCO$_2$ alone, but eCO$_2$ + eTem favour C$_4$ species45. At 480 ppm CO$_2$, A. ludoviciana plants produced 44% more seeds than at 357 ppm.

The growth of Chinese sprangletop (Leptochloa chinensis (L.) Nees; C$_4$) was enhanced under eCO$_2$ and eTem (Figure 1). Similarly, leaf area of A. paronychoides was enhanced at eCO$_2$ and eTem (ref. 25). The C$_3$ weed species, namely E. geniculata, C. album, P. minor, E. colona and wrinklegrass (Ischaemum rugosum Salish.) were the most responsive to eCO$_2$ and eTem (refs 28, 46, 47).

Impact of drought

The rate of photosynthesis, transpiration and stomatal conductance were significantly reduced under low soil moisture content48. Aridity may increase in many agriculturally significant places in the near future because of the increase in temperature (1–5°C) with each doubling of atmospheric CO$_2$ levels. eTem causes greater evaporation and rainfall variability predicts that monsoon regions will get drier49, resulting in an increase of drought-prone areas by 5–8% (ref. 37). Under this condition, the spread of weeds and their perservasiveness will be a major issue in agricultural ecosystems, and dry spells in the summer season will affect weed control in crops sown during spring50. C$_4$ and parasitic weeds like witchweed will survive better under extreme drought spells51. Scarce information is available on the effect of drought on crop–weed interaction, and this must be explored in the near future.

Crop–weed interaction

Effect of enhanced atmospheric CO$_2$ concentration

CO$_2$ enrichment has been linked to considerable stimulation in the growth and development of numerous plant species21. The type of photosynthetic pathway (C$_3$/C$_4$) in plants is responsible for variation in their response under eCO$_2$.

CURRENT SCIENCE, VOL. 124, NO. 6, 25 MARCH 2023 687
Better photosynthetic efficiency in C₃ crops (rice, wheat, soybean, etc.) indicates that they will respond more favourably to eCO₂ than the C₄ weeds (Amaranthus palmeri L., Amaranthus rudis, K. scoparia, etc.)². In rice and wheat, high CO₂ concentration along with C₄ weeds have a beneficial impact on crop competitiveness³⁹. However, P. minor was more competitive with eCO₂ over wheat under drought⁵³.

Under eCO₂, the yield of C₃ plants (soybean and C. album) was considerably higher than C₄ plants (millets and pig-weeds)⁴. Increase in biomass and yield of weedy rice in contrast to rice grown at eCO₂ advocates a larger decline in the yield of cultivated rice in the future because of greater physiological flexibility and higher genetic variations among cultivated lines and wild species⁴,⁵⁵. C₃ weeds like C. album, A. theophrasti, Ambrosia artemisiifolia and Ambrosia trifida will respond more favourably to eCO₂ and offer higher competition to C₄ crops (maize, sorghum, sugarcane, etc.). However, there was no improvement in the biomass of A. retroflexus, a C₄ weed, at eCO₂ and soybean yield loss fell from 45% to 30% (ref. 56).

eCO₂ positively impacted the overall growth of chickpea and its major weeds (Lathyrus sativa and M. denticulata)²⁴. It also profoundly impacted leaf area, number of tillers/plant, net photosynthesis and transpiration in cultivated rice and weedy rice⁴. The growth of maize was affected by E. geniculata under eCO₂ than ambient CO₂ (ref. 23). At eCO₂, the highest rate of photosynthesis was recorded in C. diffusa followed by E. geniculata, while it was the lowest in green gram⁵⁷. Higher relative growth rate (RGR) was observed in L. sativa compared to chickpea and other weed species like P. minor, M. denticulata and C. album under eCO₂ (ref. 26). Increase in dry biomass build-up at eCO₂ was 19.5%, 90.8% and 75.6% in mungbean (Vigna radiata L.), baans gha (Brachiaria reptans L.) and Eragrostis diarrrhena (Schult.) Steud. respectively⁵⁷.

Impact of elevated temperature

At eTem, plants with the C₄ pathway (mostly weeds) have a competitive advantage over crop plants with the C₃ pathway³⁹. A rise in temperature by 3°C led to significant...
enhancement in the growth of itch grass (Rottboellia cochinchinensis (Lour.) W. D. Clayton), a major C_4 weed in crops like sugarcane, corn, cotton, soybean, grain sorghum and rice [37].

C_4 weed species like S. halepense and A. retroflexus are projected to fix CO_2 at a greater rate than C_3 crops like soybean and cotton at higher temperatures and light intensity. Since high temperatures increase evaporative demand, C_4 photosynthesis is adapted much better to high evaporative demand because of its higher CO_2 compensation point and water-use efficiency [38]. With doubling of CO_2 concentration, it has been observed that C_4 weeds have a greater stimulation in photosynthesis and biomass than C_3 crops [39]. Until the Kranz anatomy of C_4 plants is fully differentiated, they utilize the C_3 pathway [40]. During this early growth stage, a major part of the leaf area of these plants performs under the C_3 pathway and, therefore are benefited under eCO_2. Under warmer conditions, green foxtail (Setaria viridis (L.) P. Beauv.) germinated late [41]. This may become a serious threat in maize because of its synchronicity with germination [42].

Interactive effect of elevated CO_2 and temperature

P. minor has a competitive advantage over wheat at eTem alone or in combination with eCO_2. eCO_2 + eTem delayed panicle maturity in cultivated rice, weedy rice and wild rice [43,44]. At eCO_2, eTem and a combination of the two, there was competitive advantage of E. geniculata (C_1) over green gram and C_4 weeds like A. viridis. eTem alone or in combination with eCO_2 had a negative impact on wheat, but no such effect was noticed in P. minor [45]. Studies revealed that under changing climate, E. geniculata and A. viridis may dominate green gram [46].

eCO_2 alone and in combination with eTem positively impacted overall improvement of maize, C. album and P. minor [47]. Similarly, eCO_2 and eTem had positive consequences on soybean and its major weeds E. colona and I. rugosum [48]. Plant height and leaf area were enhanced in A. paronychoides (C_1) and L. chinensis (C_4) under eCO_2 and eTem compared to ambient [49].

Impact of drought

Drought and arid conditions favour the growth of C_4 weeds because of their strong internal physiological mechanisms. Competition of cotton with A. theophrasti and spurred anoda (Anoda cristata Schlect.) was more under drought [50]. A decline in yield due to X. strumarium was prominent in well-watered soybean compared with water-stressed soybean [51]. More rainfall resulted in greater competition to wheat growth and yield against C. arvense. Weed competition had little effect on crops under water-deficit conditions, as the potential crop yield was already reduced by water stress [52]. In contrast, spiny amaranth (Amaranthus spinosus L.) and L. chinensis survived under water stress and produced a significant number of tillers/branch and leaves even at the lowest soil water content [53]. There is an urgent need to explore this aspect to cope with the future climate change challenges.

Herbicide efficacy

The efficacy of herbicides was affected by climatic factors such as temperature, precipitation, wind and relative humidity [54]. The efficiency and selectivity of herbicides can be exaggerated by prolonged high temperature after application, indicating that selective herbicides may become non-selective at eTem. Many studies have reported that efficacy of herbicides declined under eCO_2 (ref. 68). Some studies have suggested that as CO_2 enhances the growth and development of some weeds (C_3), which promote plant immunity and detoxify mechanisms (high volume of tissues).

Effect of elevated CO_2

eCO_2 decreased the effectiveness of glyphosate and sulphasulphuron (against P. minor) [38,42]. It also caused morpho-physiological and anatomical modifications in plants, which impact the rate of herbicide absorption and translocation [55,56]. The number and conductance of stomata decreased in C_3 plants but leaf thickness increased interfering with herbicide foliar absorption [57], as well as significant rise in starch build-up on the leaf surface. Furthermore, if vegetative growth is accelerated due to enhanced photosynthesis in response to eCO_2, perennial weeds may become more problematic. Due to the dilution effect, these alterations are likely to impair the efficacy of the applied herbicides. Furthermore, increase in the root–shoot ratio may be important for herbicide effectiveness [58].

Effect of elevated temperature

The efficacy of foliage-applied herbicides is regulated by the local climate/microclimate. The volatility of trifluralin increased at eTem, making it less effective [59]. Temperature had less impact on acifluorfen phytotoxicity in X. strumarium and A. artemisiifolia than relative humidity [60]. However, the degradation of herbicides like flumetsulam and thifensulphuron was significantly affected by eTem in the soil [61]. The glyphosate assimilation relies on temperature as evident from Desmodium tortuosum a C_3 weed [62]. An increase in relative humidity or temperature resulted in a threefold increase in the efficacy of mesotrione on X. strumarium and A. theophrasti [63]. Temperature beyond the range 20–34°C lowered the efficiency of the pyrithiobac on A. palmeri [64]. Glufosinate was more efficient in controlling wild radish (Raphanus raphanistrum L.) at eTem (ref. 78).
The efficacy of sulphosulphonate against P. minor was reduced under eTem and eCO2 + eTem (ref. 38). Bispyribac sodium showed 2, 5 and 8 days delayed effect on E. colona under eTem, eCO2 and eCO2 + eTem respectively. However, 2 and 1 day early response of this herbicide was noticed on sunberry (Physalis minima) at eTem and eCO2 + eTem. Similarly, Dinebra retroflexa showed 1, 4, 7 and 1 days delayed response to toromzone + atrazine and tembrotion + atrazine under eTem, eCO2 and eCO2 + eTem respectively. Sulphosulphonate + metul sulphonate showed 3 days early response against P. minor and 2 days delayed response on A. ludoviciana under eTem (ref. 79).

Impact of drought

Weeds under moisture stress can react by thickening their leaf cuticles, slowing down vegetative growth and flower quickly. Drought-stressed weeds are hard to manage with post-emergent herbicides. Pre-emergent herbicides require soil moisture to enter their target sites. Drought can lessen the efficacy of pre-emergent herbicides. Pre-herbicide penetration will be reduced by increased cuticle thickness and leaf pubescence in response to drought. These characteristics can also affect crop and weed growth, and restoration following herbicide administration. Drought and aridity will increase herbicide volatilization, while regular rainfall may reduce the rain safe times available for herbicide treatment in a particular agricultural system, resulting in multidimensional weed control issues. High rainfall (either in a single event or over time) may encourage the leaching of herbicides sprayed to the soil, resulting in groundwater pollution.

Weed flora shift

Climate change will have an impact on plant distribution, as well as ecosystem functioning and output. In the forests worldwide, expanding abundance of woody vines due to rising CO2 levels has been linked to higher tree mortality and impaired tree regeneration. Many weeds were more tolerant to cold temperature under eCO2 (ref. 83), indicating that weed species may expand towards the geographic poles. The spread of invasive weed P. hysterophorus has been attributed to its response to climate change, particularly eCO2 (ref. 84).

Similarly, in rainfed agriculture, a rise in parasitic weed populations would pose a significant risk to rice and sorghum crop yield. Due to the colder temperatures at higher latitudes, majority of the harmful C3 and C4 weeds in the arable land are restricted to tropical and subtropical regions.

Climate change has induced altered weed distribution, such as the emergence of Marsilea spp. in India under the wet conditions of rice. Severe drought forces the transition to direct-seeded rice, encouraging recalcitrant grass weeds such as crowfootgrass (Dactylolimenum aegyptium L.), E. indica, L. chinensis and aerobic rice. Temperature change also triggered shifts in weed flora in the face of climate change. For instance, I. rugosum was mostly seen in the tropical parts of India, but it is now ubiquitous in North India. Under projected climate change, these weeds are expected to expand their geographic range, impacting the productivity of rainfed corn, sorghum and rice crops.

Due to a deficiency of rainfall and protracted drought, arable crops and pastures will develop slowly, leaving barren land and allowing more robust, drought-tolerant weeds to invade. In addition, attention is also required regarding the effect of eCO2 on the geographical spreading of weeds in managed ecosystems.

Conclusion

Weeds are among the agricultural pests that can and will be strongly affected by climate change. Under such a scenario, handling weeds would be more complex and expensive. They will be directly affected by the expected rise in CO2 levels and temperature. Previous studies indicated that efficacy of herbicides declined under climate change. Therefore, right time application of herbicide is an important step in the weed control. Proactive measures are needed to prevent the expansion of invasive weeds to new places under the future climate change scenarios. The timing of herbicide application and other weed control measures will be heavily influenced by seasonal precipitation and temperature fluctuation. Higher amounts of certain herbicides may be required at usual intervals, that will have severe environmental consequences. Additionally, in such circumstances, a higher number of weeds may develop herbicide resistance more rapidly. Hence comprehensive research efforts encompassing ecological, physiological and molecular studies are needed to examine the interacting impacts of diverse climatic factors on plant growth and herbicide efficacy.

ACKNOWLEDGEMENT. We thank the Indian Council of Agricultural Research (ICAR), New Delhi and ICAR-Directorate of Weed Research, Jabalpur for providing the necessary facilities to carry out this study.

Received 15 December 2021; revised accepted 10 January 2023