Thus, the sandalwood tree is unique in many aspects. Unlike majority of tropical trees, this tree flowers and disperses seeds twice a year. The seeds are devoid of seed coat. The dicot seed contains a large endosperm and a tiny embryonic axis with ‘underdeveloped’ plumule and radicle. The seeds exhibit morphophysiological dormancy. The endospermous seeds demonstrate epigal germination. During germination, the rudimentary cotyledonary leaf emerges at the base of the split stalk of the endosperm and protrudes out of the seed through the micropyle, alongside the split stalk to form the shoot system. After few months of growth, the seedlings of S. album connect with host plants through the haustoria to suck essential nutrients, demonstrating their hemiparasitic nature of survival. The wood of the mature S. album trees is the second most valued timber on earth. The natural populations are being decimated due to uncontrolled illegal felling and smuggling. Therefore the species has been declared ‘vulnerable’ and enlisted in the IUCN Red List.

There is a need to undertake further botanical and eco-physiological studies on the sandal species to unravel their uniqueness with respect to correlation among tree phenology, seed development, seed structure and dormancy, germination morphology, hemiparasitic nature and development of unique wood characteristics.


Potential of integrated approach of zinc fortification in maize

Attention towards the major nutrients than secondary and micronutrients is more for achieving the targeted yields. Zinc (Zn) nutrition plays a pivotal role in plant metabolism and yield potential of maize. Indiscriminate use of high-analysis straight fertilizers coupled with negligible or no application of organics has resulted in imbalanced soil nutrient status and micronutrients deficiency across the globe, and zinc in particular. Zinc deficiency in human nutrition is widespread, after iron, vitamin A and iodine deficiencies. Nearly 49% of the global adult population does not get its daily recommended intake of 15 mg day⁻¹ of zinc. This is one of the leading risk factors associated with diseases such as diarrhoea and retarded growth contributing to the death of about 800,000 people each year. Negative correlation between irrigation and phosphorus was observed with Zn uptake which leads to the low Zn content in kernels, a major cause of Zn malnutrition among maize consumers.

Zinc enrichment in maize could be achieved using various agronomic strategies. Although application of inorganic sources alone is the common method adopted, integrated approaches (organics and inorganics) involving techniques like seed pelleting, solubilizing bacteria, enriched compost along with foliar spray at critical crop growth stages are cost-effective and sustainable options in the long run. It is also the way forward to enhance the availability of zinc from native soil reserves and to render better availability to the plants and translocation towards the sink.

A field experiment on zinc enrichment in maize was carried out at the College Farm, College of Agriculture, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Rajendranagar, Hyderabad during kharif 2019. The geographical location of the experimental site is 17°19’19.2”N lat., 78°24’39.2”E long. and altitude of 542.3 m amsl. Agro-climatically the area is classified as Southern Telangana Agro-Climatic Zone. The total rainfall received during the cropping period was 680.8 mm. The soil of the experimental site was sandy loam type, slightly acidic in pH (6.30), non-saline in electrical conductivity (EC) (0.21 dS m⁻¹), low in organic carbon (0.42%), low in available nitrogen (230.60 kg ha⁻¹), medium in available phosphorus (24.30 kg ha⁻¹), high in available potassium (388.40 kg ha⁻¹) and low in available Zn (0.54 ppm).

The experiment was laid out in randomized block design with ten treatments and replicated thrice (Table 1). Recommended dose of fertilizer (RDF) 200:60:50–N: P₂O₅: K₂O kg ha⁻¹ N was applied in three equal splits (at sowing, knee-high and tasselling stage), total P was applied as basal and K was applied in two equal splits (at sowing and tasselling stage respectively). Farmyard manure (FYM) was enriched with zinc solubilizing bacteria (ZSB) @ 1 kg per 100 kg FYM for 22 days before sowing (T₉ and T₁ treatments). Seed pelleting was done by dissolving 3.6 g of ZnSO₄ in water. Polymer was added to above solution and made into a slurry by thorough stirring. The slurry was added to 1 kg seed in a polythene cover and thoroughly mixed for 4–5 min and shaded dried (T₆ and T₇). Enriched FYM was prepared by adding ZnSO₄ @ 50 kg ha⁻¹ with 25 t FYM ha⁻¹ 22 days before sowing (T₅ and T₆). Maize hybrid NK-6240 @ 20 kg ha⁻¹ was sown adopting a spacing of 60 cm × 20 cm.

Received 4 May 2021; revised accepted 25 November 2021

M. BHASKARAN
R. UMARANI*
M. TILAK

Tamil Nadu Agricultural University,
Coimbatore 641 003, India
*For correspondence.
e-mail: umarani.tnau@gmail.com
Table 1. Effect of integrated approach of zinc fortification in maize

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Crude protein (%)</th>
<th>ZSB count (CFU × 10^7 g⁻¹ soil)</th>
<th>Grain yield (kg ha⁻¹)</th>
<th>Stover yield (kg ha⁻¹)</th>
<th>Zinc content in grain (ppm)</th>
<th>Gross returns (₹ ha⁻¹)</th>
<th>Net returns (₹ ha⁻¹)</th>
<th>B : C ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁ – Recommended dose of fertilizer (RDF) alone (control) [N : P₂O₅ : K₂O = 200 : 60 : 50 kg ha⁻¹]</td>
<td>4.98</td>
<td>7.66</td>
<td>3.020</td>
<td>6.021</td>
<td>16.55</td>
<td>59,179</td>
<td>30,519</td>
<td>1.06</td>
</tr>
<tr>
<td>T₂ – RDF + zinc solubilizing bacteria (ZSB @ 1 kg/100 kg FYM)</td>
<td>7.36</td>
<td>15.00</td>
<td>4.686</td>
<td>8.570</td>
<td>23.45</td>
<td>91,043</td>
<td>55,383</td>
<td>1.55</td>
</tr>
<tr>
<td>T₃ – RDF + FYM (25 t ha⁻¹)</td>
<td>6.44</td>
<td>14.00</td>
<td>4.506</td>
<td>8.218</td>
<td>22.15</td>
<td>87,523</td>
<td>53,863</td>
<td>1.60</td>
</tr>
<tr>
<td>T₄ – RDF + seed pelleting (3.6 g ZnSO₄ kg⁻¹ seed)</td>
<td>6.93</td>
<td>8.33</td>
<td>3.930</td>
<td>7.894</td>
<td>22.93</td>
<td>77,074</td>
<td>47,214</td>
<td>1.58</td>
</tr>
<tr>
<td>T₅ – RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹</td>
<td>6.92</td>
<td>12.33</td>
<td>6.053</td>
<td>9.084</td>
<td>26.42</td>
<td>115,616</td>
<td>81,756</td>
<td>2.41</td>
</tr>
<tr>
<td>T₆ – RDF + 0.2% foliar spray of ZnSO₄ (knee-high and tasselling stages)</td>
<td>5.35</td>
<td>9.00</td>
<td>3.129</td>
<td>6.402</td>
<td>17.94</td>
<td>61,473</td>
<td>32,713</td>
<td>1.14</td>
</tr>
<tr>
<td>T₇ – RDF + ZSB (1 kg/100 kg FYM) + 0.2% foliar spray of ZnSO₄ (knee-high and tasselling stages)</td>
<td>7.92</td>
<td>17.00</td>
<td>5.631</td>
<td>8.883</td>
<td>25.99</td>
<td>107,994</td>
<td>72,234</td>
<td>2.02</td>
</tr>
<tr>
<td>T₈ – RDF + FYM (25 t ha⁻¹) + 0.2% foliar spray of ZnSO₄ (knee-high and tasselling stages)</td>
<td>5.90</td>
<td>15.00</td>
<td>4.418</td>
<td>7.988</td>
<td>21.39</td>
<td>85,750</td>
<td>51,990</td>
<td>1.54</td>
</tr>
<tr>
<td>T₉ – RDF + seed pelleting + 0.2% foliar spray of ZnSO₄ (knee-high and tasselling stages)</td>
<td>8.05</td>
<td>9.33</td>
<td>3.919</td>
<td>7.532</td>
<td>21.68</td>
<td>76,507</td>
<td>46,547</td>
<td>1.55</td>
</tr>
<tr>
<td>T₁₀ – RDF + FYM enrichment with 50 kg ZnSO₄ ha⁻¹ + 0.2% foliar spray of ZnSO₄ (knee-high and tasselling stages)</td>
<td>6.33</td>
<td>12.00</td>
<td>4.821</td>
<td>8.823</td>
<td>25.65</td>
<td>93,673</td>
<td>59,713</td>
<td>1.76</td>
</tr>
<tr>
<td>SEM ±</td>
<td>0.36</td>
<td>0.54</td>
<td>337</td>
<td>369</td>
<td>0.70</td>
<td>5,953</td>
<td>5,953</td>
<td>–</td>
</tr>
<tr>
<td>CD (P = 0.05)</td>
<td>1.07</td>
<td>1.61</td>
<td>1,010</td>
<td>1,107</td>
<td>2.07</td>
<td>17,827</td>
<td>17,826</td>
<td>–</td>
</tr>
</tbody>
</table>

Initial population of ZSB in soil was 7.00 CFU × 10⁷ g⁻¹ soil. Initial zinc content in maize grain was 16.20 ppm.
The results revealed that significantly higher crude protein content (8.05%) was recorded with T9 compared to all other treatments, except T2 and T10; which were comparable with T8 (Table 1). The lowest crude protein content (4.98%) was recorded with T1. Improved grain protein content due to the role of zinc in the synthesis of RNA polymerase enzyme involved in the transformation of amino acids into proteins. The grains of the plants which were devoid of zinc application recorded the lowest protein content5-8.

Perusal of data on microbial population at harvest revealed that it was highest (17.00 x 10^4 CFU g^-1 soil) with the integrated approach; RDF + ZSB (1 kg/100 kg FYM) + 0.2% foliar spray of ZnSO4 (knee-high and tasselling stages) compared to rest of the treatments. Highest microbial population in this treatment might be due to the conjunctive application of ZSB enriched with FYM that increase the activity of microbial count compared to rest of the treatments14-16. Lowest microbial population (7.66 x 10^4 CFU g^-1 soil) with the integrated approach was due to the enhanced plant metabolism processes (development of cell wall, respiration, carbohydrate metabolism and microbial activity) that enabled steady availability of zinc throughout the crop growth period over inorganic sources alone12,13. Monetary returns (gross, net returns and B : C ratio) were higher with integrated approach of zinc fortification, T5 and T10 due to higher grain and stover yields compared to rest of the treatments14-16.

From the present study in maize, it can be concluded that the integrated method of zinc fortification with enriched FYM, ZSB along with RDF and foliar spray of 0.2% ZnSO4 is a sound and sustainable option to overcome the problem of malnutrition by enhancing the quality and also ensuring higher economic returns.

Conflict of interest: The authors declare no conflict of interest.

ACKNOWLEDGEMENT. We thank Prof. Jayashankar, Telangana State Agricultural University, Hyderabad for support.

Received 25 October 2021; revised accepted 25 November 2021

P. NANDINI1,*
P. LAXMINARAYANA1
K. BHANU REKHA1
T. ANJAIAH1

1Department of Agronomy,
2Department of Soil Science and Agricultural Chemistry,
College of Agriculture,
PJTS Agricultural University,
Rajendranagar,
Hyderabad 500 030, India
*For correspondence.
e-mail: nandu60109@gmail.com