Gall-inducing insects and plants: the induction conundrum

Anantanarayanan Raman*
CSIRO (Health and Biosecurity), Underwood Avenue, Floreat Park, WA 6014 & Charles Sturt University, PO Box 883, Orange, NSW 2800, Australia

Galls induced by insects and mites (insects, hereafter) have been a subject of interest to insect ecologists because of the unusual habit of gall induction and for their tightly connected relationships. These specialist insects and mites have been explored to explain the nature of interactions between them and the plants by entomologists, ecologists and plant physiologists over the last two centuries. However, the questions why only certain insect taxa induce galls on specific species of plants and how galls are induced remain challenging. Whereas several efforts made across the world implicate plant-growth regulators (PGRs) in answering the question on how galls are induced, this article emphasizes the establishment of a metaplasied cell at the location where the tip of the chitinous mandible or ovipositor first hits in the plant. In the light of the differentiation of a metaplasied cell, the earliest plant response, it is but critical to evaluate the physiology of that cell and the ‘new’ physiological events triggered around it, heralding gall initiation. PGRs certainly play a role in gall growth, but only during later stages. This article does not answer the question on how galls are induced. However, it brings to light the gaps that need to be addressed in future in the backdrop of the efforts made over the years. Since we need to deal with the physiological changes that occur in a metaplasied cell and a few adjacent cells, the use of sophisticated optical equipment and pertinent software to achieve a structured and articulate explanation impresses as the way to go.

Keywords: Cell-wall debris, chitinous mandible, gall induction, pathogenic fungi, plant-growth regulators.

Insects and mites (hereafter ‘insects’) and the galls they induce are known presently far more than before1–4. The discovery of ‘samurai’ aphids and their unique behaviour among the gall-inducing Aphidoidea by Shigéyuki Aoki was a milestone event5,6 that stimulated similar explorations in other gall-inducing insect groups7. The co-evolutionary ecology of gall-inducing insects and their host plants is a widely pursued topic today8–11. Yet, the answer to the question on how galls are induced is a mess. This article focuses on the above elusive question. It summarizes what is currently known in the induction of galls, simultaneously pointing to the many gaping holes in that knowledge and the areas that need to be focused upon.

Galls induced by insects (hereafter ‘galls’) exemplify defined plant growth12–14. Plant-growth regulators (PGRs) were implicated as the key. Nystérakis15,16 demonstrated auxins in the salivary extracts of gall-inducing Daktulosphaira vitifoliae (Phylloxeridae) on Vitis vinifera (Vitaceae) and leaf curl-inducing Brachycaudus helichrysi (Aphididae) on Prunus domestica var. domestica (Rosaceae) by testing with the oat–coleoptile and vine–tendril–spin tests, popular in the 1940s. The inhibitory and hypertrophic effects on plants with salivary-extract injections were clarified as due to variations in auxin levels17,18. In the D. vitifoliae–V. vinifera gall system, Nystérakis17,19 related the auxins detected in the saliva of D. vitifoliae to auxin precursors in V. vinifera. Boysen–Jensen20 determined that auxins regulate growth in the galls induced by Mikolai fagi (Cecidomyiidae) on Fagus sylvatica (Fagaceae). In the next two decades, Guiscarfé–Arillaga21, Beck22, Nolte23, Leatherdale24 and Schäller25 – to name a few – obtained ‘swellings’ on plants by injecting measured quantities of indole-acetic acid (IAA). Such artificially induced swellings were true plant growths, but they differed from the naturally induced galls because the former lacked a definite shape and internal tissue differentiation. Bioassay of whole-body extracts (WBEs) of insects was a popular method used in implicating IAA26,27. Hori28,29 confirmed auxin-like compounds in non-gall-inducing, plant-feeding Miridae, Pentatomidae and Coreidae (Hemiptera) using the WBE method in the 1970s.

Although only indirectly relevant, it would be pertinent to recall the ‘tumour-inducing principle’ (TIP) in Agrobacterium (Rhizobiaceae)-induced tumours on plants proposed by Braun30 (Rockefeller University, USA) in the 1950s. The TIP got explained as the ‘Ti-plasmid’ edited by an endonuclease in the 1980s. However, many stark differences differentiate an Agrobacterium-induced tumour from a gall31.

When much was spoken about the role of IAA and other plant hormones in galls, Anders32 detected lysine, histidine and tryptophan in higher levels, and glutamic acid and valine in lower levels in the salivary secretions of D. vitifoliae. He generated knotty swellings (‘nodosities’) on

*e-mail: araman@csu.edu.au; Anantanarayanan.Raman@csiro.au
V. vinifera roots cultured in solutions with measured quantities of the specified amino acids. Because the generated swellings were morphologically similar to galls induced by D. vitifoliae on the roots of V. vinifera, Anders implicated these amino acids as the gall-inducing chemicals; alternatively, they could be the precursors of the gall-inducing chemical. Between 1958 and 1961, Anders published several articles reinforcing the role of amino acids in gall induction. However, this was challenged a decade later by Miles (Adelaide University, Australia).

Galls are more than entomological and botanical novelties

A gall is the product of a natural, tight relationship between specific insects and plants. It is a near-perfect, exquisite expression on a plant in response to insect action (Figure 1). The response pattern of plants to gall-inducing insects varies: some plant taxa are susceptible and an equal number are resistant because of the levels and types of proteins they include. An understanding that a gall is the result of insect action is vital, because other plant abnormalities such as witches’ brooms, fascinations, crinkles, folds and puckerings – either vectored by insects or induced by microbes – are not. In a gall, the inducing insect lives as a parasite inflicting minimal alterations to the physiology of the host and not killing it. Küster constructively aligned the explanation of galls on the proposition made earlier by Friedrich Thomas: ‘Ein Cecidium nenne … gegen den erfahrenen Reiz.’.

Figure 1. Fir cone-like galls induced by Apsylla cistellata (Hemiptera: Psyllidae: Aphalaridae: Rhinocolinae) on the vegetative axillary meristems of Mangifera indica (Anacardiaceae). (Inset) Vertical sectional view of the gall showing nymphal chambers. For the biology of A. cistellata and gall development, see Raman et al. For distribution details, see Sharma and Raman, Burckhardt et al.
To comprehensively understand how galls are induced, the critical element will be to examine the physiology of the first two stages: initiation and triggering of new differentiation pathways, which involve the formation of secondary messengers in response to the signals perceived by the plant because of insect action. The PGRs are produced during either the late second or the third stage of gall development. Production of endogenously produced PGRs at a greater intensity than normal – as in galls – requires a trigger, highly likely, a high-molecular-weight protein. An interplay of abscisic acid and ethylene along with auxins and cytokinins occurs in senescing galls, similar to the physiology of senescing fruits.

Host–plant relations of gall-inducing insects

Not all plant-feeding insects induce galls, but only species belonging to certain families of the Eriophyoidae (Acarina) and Thysanoptera, Hemiptera, Diptera, Lepidoptera, Coleoptera and Hymenoptera (Insecta). Among these, the species of Hemiptera, Diptera, Lepidoptera and Coleoptera (Curculionidae) induce galls by the feeding action of their immature stages, whereas in Hymenoptera, gall initiation starts with the ovipositing female inserting her ovipositor into the plant organ, concurrently discharging accessory-gland secretions. Gall induction in certain tribes of the Cecidomyiidae – Asphondyliini, Porricondyliini and Lasiopterini – occurs via insertion of the ovipositor into the plant organ, concurrently discharging accessory-gland secretions along with the introduction of fungal spores. Such a gall-inducing behaviour among Cecidomyiidae is odd.

Gall-inducing insects exemplify a sophisticated level of phytophagy. Well-defined galls are induced on specific species of plants by specific species of insects. This specialist behaviour leads to considering gall-inducing insects as ‘excellent plant taxonomists’. The recent resolution reached in the context of *Ocnthorhips cockinchi-nensis* (Phlaeothripidae) that induces large sac-like galls on *Getonia floribunda* (Calycopeuteris floribunda, Combretaceae) in peninsular India illustrates this point. In a majority of gall-inducing insects, specialization extends to specific organs and sites. Exceptions exist, however. For instance, *Thilakothrips babali* (Phlaeothripidae) induces rosette galls on both leaflets and florets of *Vachellia leucophloea* (Fabaceae: Mimosoideae) in southern India. *Quadristichus erythrinae* (Eulophidae) is claimed to induce gall-like abnormalities on the leaves and flowers of more than six species of *Erythrina* (Fabaceae). Similarly, *Leptocybe invasa* (Eulophidae) is indicated as the inducer of gall-like abnormalities on the petioles, leaves and flowers of about 30 species and subspecific variants of *Eucalyptus* (Myrtaceae). *Quadristichus erythrinae* and *L. invasa* are confirmed oligophages, and oligophagy is less known among established gall-inducing taxa. *Prodiplosis longifila* (Diptera: Cecidomyiidae), recorded as the inducer of rosette galls on the shoot terminals of *Jatropha clavuligera* (Euphorbiaceae) in South-Central America, is also known to occur on several unrelated plants both as a gall-inducing taxon and not a gall-inducing taxon. However, host-specificity tests of infested and uninfested shoots of the Bolivian populations of *J. clavuligera* and a few allied and co-occurring species of *Jatropha*, made in 2017, have clarified that the populations of *P. longifila* living on *J. clavuligera* are a host-specific, cryptic species of the *P. longifila* species complex. Therefore, the question is whether the anomalies induced by *Q. erythrinae* and *L. invasa* are true galls? That other biological agents, possibly a fungus, induce amorphous growth on *Erythrina* and *Eucalyptus*, subsequently infested by the respective Eulophidae, is a strong possibility.

How and why most of the gall-inducing insects remain tied to specific plants is a mystery. Possibly gall induction requires specific molecular signals that can be triggered only by a particular species of insect endowed with specific proteins. One early explanation was that the gall-inducing *Taxomyia taxi* (Cecidomyiidae) selectively exploits *Taxus baccata* (Taxaceae) for sterols necessary for the larvae to become adults. Specific mono- and di-glycerides were detected in young, uninfested leaves of *Eucalyptus macrorhyncha* (Myrtaceae) in Central-West New South Wales, Australia, that hosts an unnamed gall-inducing species of *Glycaspis* (*Synglycaspis* Apha laridae). The natural habitat of *E. macrorhyncha* includes co-occurring populations of *Eucalyptus rossii* and *Eucalyptus dives* botanists (e.g. ref. 66) treat these three *Eucalyptus* taxa under the same group: ‘Eucalyptus subgen. *Eucalyptus + Primitiva*’. The unnamed, pouch gall-inducing species of *Glycaspis* (*Synglycaspis*) never occurs on either *E. rossii* or *E. dives*. Significant levels of sitosterol, ergosterol and stigmasterol were detected in young leaves of *E. macrorhyncha* susceptible to gall induction by this species of *Glycaspis* (*Synglycaspis*). Moreover, sitosterol and three other undetermined sterols of molecular weights 354, 382 and 440 g mol⁻¹ were present maximally only in young leaves of *E. macrorhyncha*, but absent in *E. dives* and *E. rossii* leaves of comparable age. The unique 440 g mol⁻¹ sterol was clinched as the principal factor in the choice of *E. macrorhyncha* by the gall-inducing species of *G. (Synglycaspis)*, because of its high levels in the young, gall-susceptible leaves of *E. macrorhyncha* (Table 1), explaining the choice of *E. macrorhyncha* by the species of *G. (Synglycaspis)* in a community of *E. macrorhyncha*, *E. dives* and *E. rossii*. This study reinforced the explanation made in the 1980s that gall-inducing insects choose specific plants to meet their sterol needs.

The earliest recognizable element in a gall – the metaplasied cell

Gall initiation becomes apparent in the first 24 h of attack of the plant by the insect (ref. 69, figure 30). In the *Fagus*
Table 1. Evaluation of δ¹³C and δ¹⁵N signatures and total non-structural carbohydrates (TNCs) in different plant stages and tissues (including galls and non-gall-bearing parts) from *Parthenium hysterophorus* infested by *Epiblema strenuana*.

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>Carbon isotope ratios (A (δ¹³C air – δ¹³C sample))</th>
<th>Nitrogen isotope ratios (A (δ¹⁵N air – δ¹⁵N sample))</th>
<th>TNC concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d.f. F P-value</td>
<td>d.f. F P-value</td>
<td>d.f. F P-value</td>
</tr>
<tr>
<td>Plant stage</td>
<td>2 94.040 <0.001</td>
<td>2 11.11 <0.001</td>
<td>2 2.22 ns</td>
</tr>
<tr>
<td>Plant part</td>
<td>4 114.60 <0.001</td>
<td>4 205.60 <0.001</td>
<td>4 0.28 ns</td>
</tr>
<tr>
<td>Plant stage versus plant part</td>
<td>8 8.07 <0.001</td>
<td>8 39.29 <0.001</td>
<td>8 0.31 ns</td>
</tr>
<tr>
<td>Residual</td>
<td>119 55</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

ns, Not significant. *Source: Raman et al.**

The nutritive tissue

Several subcellular modifications, reflecting the physiology of the involved cell, follow immediately. I will use examples of *D. vitifoliae* – *Vitis* cv. 3309 Couderc (*V. riparia* × *V. rupestris* cv. C–3309)** and *Aceria lycopersici* (Eriophyidae) – *Solanum dulcamara* (Solanaceae)** to illustrate the less than 24 h changes in the susceptible plant organ, a leaf.

The tips of 60–65 μm long stylets of the neonate nymphs of *D. vitifoliae* can only reach the fifth–sixth layer mesophyll cells. In 3–6 h, the cell including the stylet tip enlarges at least twice its normal size, concurrently presenting a modified subcellular structure (Figure 3 a), similar to the changes that occur in early-stage human cancer cells, except cell-wall modifications. In the next 24 h, the mesophyll–parenchyma cells lining the stylet path present modified subcellular profiles (Figure 3 b). *Vitis* cv. 3309 Couderc leaf under the feeding pressure of *D. vitifoliae* develops a nutritive tissue in 48 h. Such
Figure 2. Gall initiation (<24 h) on the leaves of *Fagus sylvatica* by neonate larvae of *Hartigiola annulipes*. **a**, Neonate *H. annulipes* larva (el) settling on a leaf of *F. sylvatica*. Note the edges around the larva showing early signs of overarching growth (scale bar – 100 μm). **b**, Paired feeding punctures inflicted by *H. annulipes* (unfilled arrow), stomata (filled arrow; scale bar – 100 μm). **c**, Sectional view of a feeding puncture (EM) (arrow – callose; scale bar – 0.5 μm). (Source: Rohfritsch, with permission from O. Rohfritsch.)

Figure 3. Less than 24 h in *Daktulosphaira vitifoliae* interaction with *Vitis vinifera* cv. 3309 Coudre leaf. **a**, Neonate nymph of *D. vitifoliae* on *Vitis* leaf (1 h; scale bar – 100 μm). **b**, Target parenchyma cell including the stylet tip (st) activated and characterized by intense cytoplasm, enlarged nuclei and numerous small vacuoles; the parenchyma cells along the stylet path are also activated, developing into the nutritive tissue which includes abundant chloroplasts (3–6 h) (ue, upper epidermis; Scale bar – 100 μm). **c**, Parenchyma cells, slightly away from the developing nutritive tissue, include enlarged nuclei (n), hyaline cytoplasm, and from one to a few centrally placed large vacuoles with many small and large exhausted multi-vesicular bodies (mb) and subcellular debris (scd); the multivesicular bodies in the developing nutritive cells appear normal and active (arrow; 3–6 h; scale bar – 100 μm). **d**, A nutritive cell with enlarged and irregularly-shaped nuclei (n) and enlarged nucleoli; the nuclei include electron-dense chromatin material and interchromatin granules, whereas the nucleoli are vacuolated (nv); membranes of the nuclear envelope are separated and bear patches of electron-dense condensations; the plasma membrane is unevenly retracted (arrows) from the cell wall; especially at the retraction points, lomasomes occur in the periplasmic space; cytoplasm is dense and includes many small, but scattered vacuoles (v); strands of rough endoplasmic reticulum (rer) occur scattered throughout the cytoplasm; the mitochondria (m) distributed along the plasma membrane appear normal and are numerous, whereas those either between the nucleus and vacuoles or between two adjacent chloroplasts include vesiculated cristae and empty central spaces; chloroplasts (chl) are not hypertrophied, but the granal stacks are numerous and compressed; the thylakoids are condensed with their membranes dilated, sequel to granal compression; chloroplasts include neither plastoglobuli nor starch (24 h response; scale bar – 1 μm). (Source: Raman et al.71.)
tissue includes hypertrophied cells and nuclei, more-than-usual numbers of mitochondria, and other modified cell organelles. This tissue includes high levels of starch and lipids, but low levels of phenolic inclusions (Figure 3c and d).

At this earliest ‘recognizable’ stage of gall induction, the nucleus in the metaplasied cell remains spherical and unlobed, but will be strikingly different from the nuclei in normal cells in the same organ by its large size, greatly dispersed heterochromatin and large nucleolus. Many subcellular changes occur concurrently. The endoplasmic reticulum expresses as myelin figures indicating oxidative stress. The Golgi bodies get intensely modified reflecting alterations in the pathways in lipid–protein metabolism and subcellular transport. Mitochondria mostly remain unaltered, indicating no major alteration in the respiratory activity. Various modified plasids occur reflecting stress and altered photosynthesis. This modified tissue will include elevated levels of primary metabolites, further to an intense phosphatase activity reinforcing greater inorganic phosphate utilization. Starch usually occurs in non-hydrolysable form in cells away from the site of feeding by the insect; lipids, on the other hand, occur in cells close to the insect. In Cynipidae-induced galls, lipids occur as di- and triacylglycerides. The contrasting distribution patterns of lipids, but low levels of phenolic inclusions (Figure 3c and d).

A. lycopersici

Establishment of the nutritive tissue in galls reinforces the nutrition hypothesis, underpinning its ecological relevance in gall induction. The structure and design of nutritive tissue in galls induced by different insect groups is generalizable, although the specific nature of location, distribution and orientation varies with insect groups. Such a variation arises because of the nature of the mouth parts of the inducing insect(s) and their respective feeding behaviour(s). For example, in galls induced by hemipteroids with sucking behaviour, nutritive tissue differentiates at varied depths on the same plant organ (e.g. a leaf). In galls induced by Phlaeothripidae, the nutritive tissue differentiates immediately below the epidermis, because of the short length and asymmetry of mouth parts. In contrast, in galls induced by Sternorrhyncha that bear relatively long and slender stylets, the nutritive tissue develops at 5–10 layers depth in the mesophyll. The location of the nutritive tissue in the plant organ is directly related to the lengths of stylets of the feeding Sternorrhyncha.

Feeding action – physical injury and irritation, chemical action by the salivary secretions – of the inducing insect ensures the active status of the nutritive tissue. When the larva stops feeding, the nutritive tissue loses its dynamic profile and gets replaced by inactive parenchyma and occasionally by lignified tissue (e.g. sclereids). When the larva is either removed or killed, the distribution of carbohydrates and lipids in the non-functional nutritive tissue rapidly reverses. Accumulation of other metabolic products, such as minerals, is known, but those details would be irrelevant here.

That a gall is a nutrient sink was first shown in the M. fagi – F. sylvatica gall system by Kirst and Rapp (Darmstadt, Germany) in the 1970s. Total non-structural carbohydrates (TNCs) and carbon–nitrogen isotope ratios were measured in tissues of galls, gall-proximal, gall-distal and non-gall-bearing stems of identical age of Parthenium hysterophorus (Asteraceae) induced by Epiblema strenuana (Curculionidae). The E. strenuana larvae drain nutrients and energy, stress the shoot tissues away from the site of feeding by the insect; lipids, on the other hand, occur in cells close to the insect. In Cynipidae-induced galls, lipids occur as di- and triacylglycerides. The contrasting distribution patterns of lipids, but low levels of phenolic inclusions (Figure 3c and d).

The less than 24 h changes that occur in the leaf cells of susceptible varieties of S. dulcamara punctured by the chelicerae of A. lycopersici include vacuolar alkalization followed by alteration in DNA levels associated with chitosan build-up, illustrating the changes influenced by signal perception and transduction. This action triggers the host plant to turn metaplasied, communicating with the neighbouring cells via signal transduction. A nutritive tissue gets established in the next 3–4 h, on which individuals of A. lycopersici feed. These changes never manifest in the varieties of S. dulcamara resistant to A. lycopersici. In the incompatible (resistant) reactions between A. lycopersici and S. dulcamara, a rapid spread of subcellular damage from the punctured cell to those in the neighbourhood manifests as cell necrosis, expressing externally as tissue lesions. This hypersensitive reaction in resistant varieties of S. dulcamara impedes further feeding by A. lycopersici, followed by their death.

Establishment of the nutritive tissue in galls reinforces the nutrition hypothesis, underpinning its ecological relevance in gall induction. The structure and design of nutritive tissue in galls induced by different insect groups is generalizable, although the specific nature of location, distribution and orientation varies with insect groups. Such a variation arises because of the nature of the mouth parts of the inducing insect(s) and their respective feeding behaviour(s). For example, in galls induced by hemipteroids with sucking behaviour, nutritive tissue differentiates at varied depths on the same plant organ (e.g. a leaf). In galls induced by Phlaeothripidae, the nutritive tissue differentiates immediately below the epidermis, because of the short length and asymmetry of mouth parts. In contrast, in galls induced by Sternorrhyncha that bear relatively long and slender stylets, the nutritive tissue develops at 5–10 layers depth in the mesophyll. The location of the nutritive tissue in the plant organ is directly related to the lengths of stylets of the feeding Sternorrhyncha.

Feeding action – physical injury and irritation, chemical action by the salivary secretions – of the inducing insect ensures the active status of the nutritive tissue. When the larva stops feeding, the nutritive tissue loses its dynamic profile and gets replaced by inactive parenchyma and occasionally by lignified tissue (e.g. sclereids). When the larva is either removed or killed, the distribution of carbohydrates and lipids in the non-functional nutritive tissue rapidly reverses. Accumulation of other metabolic products, such as minerals, is known, but those details would be irrelevant here.

That a gall is a nutrient sink was first shown in the M. fagi – F. sylvatica gall system by Kirst and Rapp (Darmstadt, Germany) in the 1970s. Total non-structural carbohydrates (TNCs) and carbon–nitrogen isotope ratios were measured in tissues of galls, gall-proximal, gall-distal and non-gall-bearing stems of identical age of Parthenium hysterophorus (Asteraceae) induced by Epiblema strenuana (Curculionidae). The E. strenuana larvae drain nutrients and energy, stress the shoot tissues away from the site of feeding by the insect; lipids, on the other hand, occur in cells close to the insect. In Cynipidae-induced galls, lipids occur as di- and triacylglycerides. The contrasting distribution patterns of lipids, but low levels of phenolic inclusions (Figure 3c and d).

The less than 24 h changes that occur in the leaf cells of susceptible varieties of S. dulcamara punctured by the chelicerae of A. lycopersici include vacuolar alkalization followed by alteration in DNA levels associated with chitosan build-up, illustrating the changes influenced by signal perception and transduction. This action triggers the host plant to turn metaplasied, communicating with the neighbouring cells via signal transduction. A nutritive tissue gets established in the next 3–4 h, on which individuals of A. lycopersici feed. These changes never manifest in the varieties of S. dulcamara resistant to A. lycopersici. In the incompatible (resistant) reactions between A. lycopersici and S. dulcamara, a rapid spread of subcellular damage from the punctured cell to those in the neighbourhood manifests as cell necrosis, expressing externally as tissue lesions. This hypersensitive reaction in resistant varieties of S. dulcamara impedes further feeding by A. lycopersici, followed by their death.

Establishment of the nutritive tissue in galls reinforces the nutrition hypothesis, underpinning its ecological relevance in gall induction. The structure and design of nutritive tissue in galls induced by different insect groups is generalizable, although the specific nature of location, distribution and orientation varies with insect groups. Such a variation arises because of the nature of the mouth parts of the inducing insect(s) and...
with gibberellin-like activity were detected and there were no auxins at detectable levels in the extracts of *J. coloradensis*\(^{107}\). Byers \textit{et al.}\(^{107}\) extrapolated this finding that the auxins are of plant source and insect action stimulates their activation. In contrast, in an unnamed species of *Pontania* (Tenthredinidae) – *Salix japonica* (Salicaceae) gall system\(^{108}\), IAA has been detected in the larval saliva, metabolized from tryptophan via deamination and decarboxylation. Transcript levels of auxin- and cytokinin-responsive genes were higher in gall-bearing than in non-gall-bearing plant organs, indicating that the insect action activates the genes responsible for this action. Abnormally high levels of t-zeatin riboside in *Pontania* galls on *S. japonica* indicate that *Pontania* could synthesize cytokinins as well as IAA. Gene profiles indicate high levels of auxin and cytokinin activity in galls\(^{108}\). Yamaguchi \textit{et al.}\(^{108}\) clarify that the two undetermined adenine derivatives identified by McCalla \textit{et al.}\(^{109}\) in the 1960s are in fact the ‘t-zeatin riboside’ and ‘isopentenyladenosine’, signal molecules of cytokinin biosynthesis in plants. This is an elegant explanation of stage-3 in gall development. Using gas chromatography coupled with mass spectrometry (GC–MS), high levels of IAA have been demonstrated in the larvae of *Eurosta solidaginis* (Tephritidae)\(^{110}\) and *Gnorimoschema gallaesolidaginis* (Gelechiidae)\(^{111}\) respectively, both inducing galls on the stems of *Solidago altissima*. Collectively, the studies made in recent years, using sophisticated analytical equipment and those made between the 1940s and 1980s using less sophisticated methods suggest the possibility that the inducing insect larvae include precursors of IAA and cytokinins, which get introduced into the plant tissues through their salivary or accessory-gland secretions.

Senescing galls

The physiology of galls on maturation, i.e. when the inducing insect ceases to feed and refrains from stimulating the gall to grow is broadly similar to the physiology of normally ripening and senescing fruits\(^{112}\). However, what needs to be factored here is that the proportions of production, transport and storage of various primary and secondary metabolites vary with the insect and plant...
species involved. These responses depend on the nature of physical and chemical stresses exerted by the inducing insect. Photosynthesis, for instance, is intensely altered in galls because of structural and functional modifications in chloroplasts. Yet, sugar transport from other parts of the plant occurs mostly, via symplast. Dehiscence of galls and fruits involves similar physiological processes. The dehiscing fruits and galls include newly differentiated specialized cells, and a tight coordination of molecular and biochemical events occurs leading to cell separation freeing seeds in fruits and the late-stage larva (or adult in some instances) in galls.

Chitinous body parts in gall induction

The present level of clarity in flowering plants—pathogenic fungi interactions is useful in understanding the mechanism of gall induction. Qualitative interpretations of the less than 24 h of gall-inducing insect–plant interactions are largely similar to the early phase of attack of plant cells by fungal pathogens. Plant-cell surface enabled with different receptors functionally linked to diverse intra- and intercellular signal pathways facilitates rapid responses to invading fungi. This phase, between a fungus and a susceptible plant, depends on the apoplastic perception of microbe-associated molecular patterns (MAMPs) of the plant. Plants have evolved a mechanism by which they indirectly ‘monitor’ fungal pathogens via the perception of products that arise during the pathogen’s life on the plant. Such monitoring mechanisms provide a credible explanation. When wounded by chitin discharged by gall-inducing insects into plant cells during gall induction acts as an elicitor. With the discharged chitin from the feeding insect, the host plant cell recruits a downstream pathway negotiating either a susceptible or a resistant response.

Wounding of plant cells by the insect results in rapid modification of the subcellular environment, accompanied by chemical shock triggered by chitin discharged by the attacking insect. Physiological steps characterized in *Arabidopsis thaliana* (Brassicaceae) wounded by Spodoptera littoralis (Noctuidae)–a non-gall-inducing taxon–are critical factors.

![Table 2. Sterols (mol%) in uninfested and gall-bearing leaves of *Eucalyptus macrorhyncha* and comparable leaves of *Eucalyptus rossii* and *Eucalyptus dives*](image-url)

<table>
<thead>
<tr>
<th>Sterol molecular weight</th>
<th>Y</th>
<th>M</th>
<th>I</th>
<th>E. macrorhyncha – Synglycaspis sp. system (sterols in mol%)</th>
<th>E. rossii</th>
<th>E. dives</th>
</tr>
</thead>
<tbody>
<tr>
<td>326.4</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>354.1</td>
<td>0.08</td>
<td>0.11</td>
<td>0.07</td>
<td>0.07</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>382.1</td>
<td>0.13</td>
<td>0.2</td>
<td>0.16</td>
<td>0.17</td>
<td>0.17</td>
<td>0.18</td>
</tr>
<tr>
<td>396.3</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>410.2</td>
<td>0.05</td>
<td>0.25</td>
<td>0.12</td>
<td>0.12</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>412.4</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>414.3</td>
<td>0.11</td>
<td>0.12</td>
<td>0.12</td>
<td>0.16</td>
<td>0.18</td>
<td>0.16</td>
</tr>
<tr>
<td>424.4</td>
<td>0.00</td>
<td>0.015</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>426.2</td>
<td>0.06</td>
<td>0.05</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>440.3</td>
<td>0.38</td>
<td>0.060</td>
<td>0.34</td>
<td>0.23</td>
<td>0.17</td>
<td>0.14</td>
</tr>
<tr>
<td>454.2</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>534.3</td>
<td>0.02</td>
<td>0.00</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
</tr>
</tbody>
</table>

0, Uninfested leaves; I, Infested leaves; Y, Young uninfested leaves; M, Mature uninfested leaves; 1, 2, 3, 4, 5, Galls harbouring populations of the first, second, third, fourth, and fifth instars *(n = 50 each category).*

Source: Sharma et al.
possibly occurs and they in turn provoke osmotic changes in the protoplast of the attacked cell, resulting in the earliest recognizable stage in gall induction.

The wounded cell gets activated and turns metaplasied because of the effector proteins discharged from the insect: either from the saliva (e.g. Cecidomyiidae) or from the accessory glands (e.g. Cynipidae). Among the different suggestions explaining the possible chemical triggering the gall85–87, the 58 kDa protein shown in *S. altissima–E. solo-dagin*is gall85 impresses as the most credible. Highly likely, a high-molecular weight protein discharged simultaneously with the chitin triggers the formation of the metaplasied cell, followed by a new morphogenetic pathway to establish the specialized nutritive tissue around it.

Similar to pathogenic fungi, gall-inducing insects can overcome the innate immunity and establish a susceptible cell, followed by a new morphogenetic pathway to establish the specialized nutritive tissue around it.

The resulting metabolic changes stimulated by alterations in the vacuolar pH – presently referred as ‘novel’ chemicals of unknown details – diffuse from these dedifferentiated cell(s) into the immediate neighbourhood, but are localized because of their obvious weak nature. This means that the effect does not spread throughout either the involved organ or the plant, explaining why galls and their effects are localized. Relevant here will be to remind us that the term ‘toxin’ was liberally used in the 1960s to refer to the secretions (the gall-inducing factors) of gall-inducing insects (e.g. ref. 127). This usage was incorrect, since the physical action of the insect and chemical secretions stimulate growth in the affected tissue and do not kill them, although an insignificant level of necrosis may manifest during early stages in interactions, especially in some species of the less-evolved groups such as the Thysanoptera86 and Eriophyoidea128. Osmotic change-related metabolic pressure builds up when gall-inducing insects attack plant cells, activating a train of events in the immediate environment of those plant cells delicately punctured by the feeding or ovipositing insect. The later sequence of events includes alterations in gas exchange and synthesis of growth promoters. Gall induction involves the vigorous uptake of oxygen, stimulating auxin activity. Osmotic stress alters electrical properties of the plasma membrane and impacts on IAA synthesis and activity, which, in turn, alters H+ transport129. From what we know thus far, it is possible to infer that the plant actively mobilizes energy and nutrients to mitigate the stress and repair the wound from the time of attack by the insect130. The insect incidentally utilizes the energy and nutrients mobilized at this site to its advantage.

Carango et al.85 in the 1980s and Schönrogge et al.131 and Hearn et al.132 in recent times clarify that the initialmost stage in galls (the metaplasied cell?) is triggered by proteins. No third-party organisms such as virus-like particles have been detected in *Biorhiza pallida* (Cynipidae)-induced galls on *F. sylvatica*132. However, Hearn et al.132 show many differentially and highly expressed genes in young *B. pallida* larvae encoding secretory peptides – the possible effector proteins – transmitted into *F. sylvatica*. The arabino-galactan proteins of *F. sylvatica* and chitin from *B. pallida* interact in young galls arising on *F. sylvatica*. The *B. pallida* larvae express genes encoding multiple plant cell-wall degrading enzymes.

Plants hosting gall-inducing insects employ varied strategies to neutralize the stress that arises during gall induction and growth-and-differentiation phases. These stress-neutralizing strategies are necessarily dictated by the genetic constitution of plants, but their responses are mediated by molecular changes, varying with the kind of the involved insect. The variation in the strategies could be due to the physiology of action and the nature of chemicals acting in the process. Yet, to generalize, the feeding biology of Cecidomyiidae and the oviposition biology of Cynipidae are useful models. In the context of gall induction, susceptible plants use a flexible, short-term strategy responding to stress inflicted by the insect. That short-term strategy involves mobilization of energy and other metabolites to the wound site as a reparative effort to heal the wound, which the inducing insect exploits for its nourishment. This point is fully clear when we realize that the plant returns to its normal physiology the moment the insect ceases to feed. Genetic factors play a role in controlling the shape of the gall, coordinated by the innate correlating morphogenetic factors that operate normally in the plant58.

Conclusion

In spite of unveiling details of several galls and inducing insects of different groups, our understanding of the physiology of gall induction is a conundrum. We are in a state similar to that which existed between the times of Hooke (1660s) on the one hand, and Schleiden and Schwann (1830s) on the other, in explaining the cell133. Every biologist interested in explaining gall induction has broached it in the way he/she considered the best using insects of various groups that display varied feeding and oviposition behaviours. Curiously, each of these investigators found an answer and unhesitatingly suggested what they found was ‘the’ answer to the nagging question.

In short, a generalizable answer to how galls are induced is still elusive. First, we lack a precise definition of a gall. Any abnormality with the involvement of an insect is conveniently, but incorrectly, referred as a gall. Second, from what we know today, a gall induced by a less-evolved insect follows a distinctly different
developmental process from that induced by a better-evolved insect. Such varied biologies make them ambiva-
 lent. A thorough understanding of the basic biological processes occurring during early stages of interaction
 between the insect and the plant – clarifying the role of
 chitin supported by carefully designed biochemical and
 molecular studies – is the immediate need. There are
difficulties, of course. Subjecting a metamplased cell to
biochemical quantification using sophisticated instrumen-
tation is hard. A smart combination of in situ exploration
using tools such as light-sheet fluorescence and confocal
microscopy combined with various omics tools should
offer insights into the molecular physiology of the meta-
plased cell and the events that follow during the early
phase of gall development, answering the long-pending
question on how galls are induced. Nevertheless, looks-
like we still have a long way to go.

1. Skuhrová, M. and Skuhrváy, V., Gall midges (Diptera: Cecido-

2. Yukawa, J. and Partomihardjo, T., Insect and mite galls collected from

4. Saleem, U. K. A. and Nasser, M., Insect-induced galls of the

7. Chapman, T. W., Crespi, B. J. and Perry, S. P., The evolutionary
ecology of eusociality in Australian gall thrips: a ‘model clades’
approach. In *Ecology of Social Evolution* (eds Korb, J. and

8. Stone, G. N. and Schönrogge, K., The adaptive significance of

10. Hardy, N. B. and Cook, L. B., Gall induction in insects: evolution-
ary dead-end or speciation driver? *BMC Evol. Biol.*, 2010,
10, 1257; http://www.biomedcentral.com/1471-2148/10/257 (ac-
essed on 20 February 2020).

11. Raman, A., Adaptive radiation and diversification in gall-
59, 177–187.

Netherlands, 1964, p. 434.

13. Rohfritsch, O., Développement cécidien et rôle du parasite dans

tenstein, C. P., Cynigal galls: insect-induced modifications of
plant development create novel plant organs. *Plant, Cell

15. Nystérakis, F., Nouvelle interprétation de la formation des cécidi-

70. Küster, E., Pathologische Pflanzenanatomie, Gustav Fischer, Jena, Germany, 1903, p. 312.

L. plants.
Heming, B., Structure and function of the mouthparts in larvae of
nutrition hypothesis for the adaptive nature of insect galls: does a
Diamond, S. E., Blair, C. P. and Abrahamson, W. G., Testing the
Westphal, E., Modification du pH vacuolaire des cellules épider-
2016,
Raman, A. and Ananthakrishnan, T. N., On the developmental
Raman, A., Gall induction by hemipteroid insects.
Mapes, C. C. and Davies, P. J., Indole-3-acetic acid and ball gall
Tooker, J. F. and De Moraes, C. M., A gall-inducing caterpillar
species increases essential fatty acid content of its host plant
Palma, J. M. et al., Fruit ripening: from present knowledge to
Arenas, Y. A. et al., Functional analysis and mode of action of
Siewers, V. et al., Functional analysis of the cytochrome P450
monooxygenase gene bch01 of Botrytis cinerea indicates that
Solinas, M., Anatomia e organizzazione funzionale del capo della larva matura di Phaenobremia aphidimyza (Ron-
Cerkvenik, U. et al., Stiffness gradients facilitate oviposition
pusztahelyti, T., Chitin and chitin-related compounds in plant–
Wan, J., Zhang, X.-C. and Stacey, G., Chitin signaling and plant
Shamshina, J. L., Oldham, T. and Rogers, R. D., Applications of
chitin in agriculture. In Sustainable Agriculture Reviews 36, Chitin
and Chitosan in Food, Agriculture, Pharmacy, Medicine, and Waste Water Treatment (eds Crini, G. and Lichtfouse, E.), Springer
Schweitzer, F. et al., Differential contribution of transcription
126. Harris, M. O. and Pitzschke, A., Plants make galls to accommodate foreigners: some are friends, most are foes. *New Phytol.*, 2020, 225, 1852–1872.

ACKNOWLEDGEMENTS. I thank Laurence Mound (Australian National Insect Collection, CSIRO, Canberra, Australia), Soundaraarajan Madhavan (University of Nebraska, Lincoln, USA), and Krishnappa Chandrashekar (University of Agricultural Sciences, Bengaluru) for reviewing the final draft of this manuscript and Anamika Sharma (IPM Innovation Lab, Virginia Tech, Blacksburg, USA) for help in organizing the images.

Received 16 October 2020; accepted 2 November 2020

doi: 10.18520/cs/v120/i1/66-78