Macrocycles of axially chiral and racemic \(N\)-heterocyclic carbene silver(I), gold(I) and palladium(II) complexes: synthesis, characterization and computational structures

Sonali Ramgopal Mahule*
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India

In this study, Ag(I), Au(I) and Pd(II) \(bis\)-\(N\)-heterocyclic carbene (NHC) complexes derived from axially chiral \(R\)-1,1\(^{\prime}\)-binaphthyl-2,2\(^{\prime}\)-diol (\(R\)-BINOL) and racemic biphenyl-2,2\(^{\prime}\)-diol scaffolds have been synthesized. The metallation of these \(bis\)-imidazolium and \(bis\)-triazolium types of ligand precursors of \(R\)-BINOL and biphenol unit, viz. (1–4)d has been achieved using standard procedure. The \(\{L(L')\text{-NHC})_{2}\text{Ag}\}\) type, chiral (1–2)e and racemic (3–4)e complexes have been obtained by the treatment of ligand with Ag\(_2\)O. Similarly, chiral Pd(II) (1f) and Au(I) (1g) complexes have been synthesized and analysed using spectroscopic techniques. The geometry-optimized structures obtained through the density functional theory display good proximity with the reported X-ray structures of similar type of Ag(I), Au(I) and Pd(II) complexes.

Keywords: Axial chirality, density functional theory, ligands, racemic complex.

AXIAL chirality in 1,1\(^{\prime}\)-binaphthyl-2,2\(^{\prime}\)-diol (BINOL) is due to restricted rotation around the C–C axis linking two naphthyl units that give the two configurationally stable atropisomers. Consequently, BINOL have been widely used as a structural motif for designing chiral catalysts for various asymmetric transformations\(^{1,3}\). The chelating effect provides stability to \(bis\)-\(N\)-heterocyclic carbene (NHC)-based metal complex and constitutes a key component for the successful designing of a homogeneous catalyst; hence the same phenomenon works in developing several \(bis\)-NHC-type catalysts of axially chiral NHC ligands. However, the successful designing of NHC for homogeneous catalysts requires thermal stability and strong M-NHC bond, which is often achieved through chelation\(^{4,5}\).

The coordination chemistry and synthesis of the first axially chiral NHC of BINOL moiety with two imidazole rings linked to it was reported by Clyne et al.\(^{6}\). Thereafter, several NHC ligands of BINOL-based scaffolds have been evaluated for their strong \(\sigma\)-donor and weak \(\pi\)-acceptor characters, and utility in several catalytic reactions. The gradual changes in designing different types of NHC ligands began from the year 2000, with major contributions from Shi and co-workers\(^{7,8}\) and Hoveyda and co-workers\(^{9,11}\), who mainly studied the catalytic tendency of various transition metal–NHC complexes and ligands as well as their chiral induction in many asymmetric catalytic transformations. The most popular examples of such reactions are Heck reactions\(^{12}\), Suzuki coupling\(^{13}\), Sonogashira coupling\(^{11}\), and asymmetric ring-opening cross-metathesis (AROM/CM)\(^{10,14}\), and other reactions\(^{15,23}\). Moreover, Au and Au–NHC complexes are gaining popularity not only in homogeneous catalysis\(^{24}\), but also in medicinal chemistry for their anticancer and antimicrobial properties\(^{25}\).

Several types of \(N\)-heterocyclic carbenes of BINOL scaffolds have been studied but this type of comparative study of chiral moiety (BINOL) and its achiral counterpart (2,2\(^{\prime}\)-biphenol) is reported here first time. Therefore, here we have designed and synthesized different Ag(I), Au(I) and Pd(II) complexes (Schemes 1 and 2) of these two scaffolds. We have examined them based on characterization data and developed computational structures of each of these complexes.

Experimental

General procedure

All manipulations were carried out using standard Schlenk techniques. Solvents were purified and degassed by standard procedures. R-BINOL, chloroacetyl chloride, 1-methyl-imidazole and Ag\(_2\)O were purchased from Spectrochem (India) and used without any further purification. 1-i-Propyl-1H-1,2,4-triazole (ref. 26), (COD)PdCl\(_2\) and (SMe\(_2\))AuCl (ref. 27), and other intermediates\(^{28}\), viz. 1a, 1b, 3a and 3b were synthesized by some amendments of the procedures reported in the literature. \(^1H\) and \(^13C\)\({_}^1H\) NMR spectra were recorded in CDCl\(_3\), DMSO-
\(d_6\) and CD\(_3\)OD (Bruker 400 and 500 MHz NMR spectrometer). \(^1H\) NMR peaks were labelled as singlet (s),
Scheme 1. Synthetic pathway for the R-BINOL-based axially chiral silver(I), gold(I) and palladium(II) complexes of bis-NHC ligands.

Scheme 2. Synthetic pathway for the biphenyl-2,2′-diol based racemic silver(I) complexes of bis-NHC ligands.

doublet (d), triplet (t), a triplet of doublets (td) and multiplet (m). Infrared spectra were recorded (Perkin–Elmer Spectrum One FT-IR Spectrometer) and mass spectrometry measurements were made (Micromass Q-T of Spectrometer and Bruker Maxis Impact Spectrometer). Elemental analysis was carried out (Thermo Finnigan Flash EA 112 SERIES (CHNS) Elemental Analyzer) and specific optical rotation experiments were performed (JASCO P-2000 polarimeter and Autopol IV, Serial #82083 Polarimeter).
Density functional theory (DFT) calculations were performed on all the metal complexes (1–4) using GAUSSIAN 09 suite of quantum chemical programs\(^ {29}\). The Becke three-parameter exchange functional in conjunction with Lee–Yang–Parr correlation functional (B3LYP) was employed in the study\(^ {30,31}\). The polarized basic set 6-31G(d) was used to describe chlorine, oxygen, carbon, nitrogen and hydrogen atoms\(^ {32–34}\). The Stuttgart–Dresden effective core potential (ECP) along with valence basis sets (SDD) were used for the silver\(^ {35–37}\), Dresden effective core potential (ECP) along with valence basis sets (SDD) were used for the silver\(^ {35–37}\), gold\(^ {38,39}\) and palladium\(^ {40–42}\) atoms. Frequency calculations were performed for all the optimized structures to characterize the stationary points as minima.

Results and discussion

BINOL-based chiral bis-imidazolium and bis-1,2,4-triazolium chloride salts

A series of axially chiral bis-imidazolium and bis-triazolium salts (1–2)d (Scheme 1) were synthesized in four steps. Designing the ligand precursors included a series of manipulations that commenced with the framework of R-BINOL as described below.

\[(R,2,2')-bis(4-nitrophenoxy)-1,1'-binaphthyl (1a)\]

was prepared by nucleophilic aromatic substitution with addition–elimination reaction between R-BINOL and p-fluoronitrobenzene in the presence of base in quantitative yields, which on reduction with Pd/C yielded \((R,4,4')(1,1'-binaphthyl-2,2'-diyl-bis(ox))\)dianiline (1b) in 90–95% yield. The compound 1b showed broad resonance at 3.00–4.00 ppm for \(\text{NH}_2\) moiety, while the aromatic resonances appeared in the range 6.50–7.70 ppm in the \(^1\)H NMR spectra.

Subsequently, the reaction of chloroacetyl chloride with the precursor 1b gave the compound 1c in 85% yield. The compound 1c showed chemical shift at 8.00 ppm for \(\text{NH}\) as a broad singlet and 4.00–4.20 ppm as a singlet for \(\text{CH}_2\) moiety. The amide (–CONH) stretching frequencies for 1c appeared at 1670 and 1593 cm\(^{-1}\) in the infrared spectrum.

The compound 1d on further alkylation with N-methylimidazole gave 1d and with 1-iodo-1,2,4-triazole gave 2d in quantitative yields\(^ {44}\). In the \(^1\)H and \(^{13}\)C\[^{1}\text{H}\] NMR spectra, the highly downfield NCHN resonance at 9.17–11.0 ppm and 137.9–138.0 ppm respectively, is for the bis-imidazolium salt 1d and the corresponding bis-triazolium salts appeared at 10.0 and 145.0 ppm for 2d (ref. 45). Optical activity \(\delta\) of these chiral ligand precursors was found to be +23.8° (c 1.0, MeOH) and +301.3° (c 1.0, CHCl\(_3\)) for 1d and 2d respectively. These intermediates were further characterized by HRMS data and elemental analysis.

Biphenol-based racemic bis-imidazolium and bis-1,2,4-triazolium chloride salts

The 2,2'-biphenol based racemic ligand precursors (3–4)d (Scheme 2) were synthesized following the same method as that of its corresponding chiral precursors 1(a–d) and 2d. Interestingly, these intermediates were obtained with almost same yields as those for compounds 1a, 1b, 1c, 1d and 2d. On interpreting and comparing various data, the results were quite similar to the chiral counterparts; for example, 3b showed broad resonance at 3.00–4.00 ppm for \(\text{NH}_2\) in the \(^1\)H NMR spectrum as that of 1b, while 3d showed the same NCHN resonance at 9.17–11.0 ppm like 1d and in bis-triazolium salt 4d, the NCHN resonance appeared at 10.0–11.0 ppm as in 2d (ref. 45). On comparison between the chiral and racemic moieties, the main difference was observed in \(^1\)H NMR spectra of \(\text{CH}_2\) splitting pattern. These protons split as double of doublet for diastereotopic protons in (1–2)c and (1–2)d, and singlet for homotopic protons in (3–4)c and (3–4)d.

Axially chiral Ag, Au, Pd, and racemic Ag bis-NHC complexes

The formation of chiral \((1–2)e \ [L(L'-\text{NHC})_2]\) AgCl \((L = 2,2\text{-dioxo-binaphthyl, } L' = \text{phenyl-acetamido})\) and racemic \((3–4)e \ [L(L'-\text{NHC})_2]\) AgCl \((L = 2,2\text{-dioxo-biphenyl, } L' = \text{phenyl-acetamido})\) complexes was achieved through \textit{in situ} deprotonation of their respective bis-azolium salts, viz. \((1–4)d\) with two equivalents of Ag2O in dichloromethane (Schemes 1 and 2). The disappearance of resonance at 9.17–11.0 ppm of the starting carbene precursors in \(^1\)H NMR spectrum and appearance of a peak at 180.0–181.0 ppm in \(^{13}\)C\[^{1}\text{H}\] NMR spectrum confirmed the formation of compounds 1e and 3e. Similarly, no corresponding resonances at 10.0–11.0 ppm in the \(^1\)H NMR spectrum of the starting carbene precursors and presence of a peak at 180.0–181.0 ppm in \(^{13}\)C\[^{1}\text{H}\] NMR spectrum showed the formation of 2e and 4e \([L(L'-\text{NHC})_2]\) AgCl complexes\(^ {46}\).

However, the change in stoichiometry of ligand–metal precursors with the above-mentioned synthetic conditions has not resulted in a mixture of complexes or any other type of complex.

The axially chiral BINOL-based \([L(L'-\text{NHC})_2]\) PdCl\(_2\) \((L = 2,2\text{-dioxo-biphenyl, } L' = \text{phenyl-acetamido})\) complex (1f) was synthesized by the transmetalation of Ag-bis-NHC complex (1e) with the metal precursor (COD)PdCl\(_2\) in 29–35% yield\(^ {47}\). The complex (Figure 1) 1f showed the characteristic Pd–N\(_2\)C\(_2\) resonance at 169.5 ppm in \(^{13}\)C\[^{1}\text{H}\] NMR spectrum of the compound upfield shifted from its respective Ag-bis-NHC complex (1e).

The chiral \([L(L'-\text{NHC})_2]\) AuCl \((L = 2,2\text{-dioxo-binaphthyl, } L' = \text{phenyl-acetamido} (1g))\) complex was synthesized from its Ag-bis-NHC analogue (1e) with the
metal precursor (SMe2)AuCl in 44% yield. The formation of this complex is evident from the upfield shift of the Au–NCC resonance at 171.2 ppm in the 13C{1H} NMR spectrum compared to the corresponding Ag–NHC complex that appeared at 180.0–181.0 ppm. Further, these NHC complexes have been characterized using other techniques like HRMS studies and elemental analysis.

Interestingly, the four different imidazole and triazole-based ligands containing BINOL and biphenol units in chelated (1–4)e complexes were employed as a 13C{1H} NMR spectroscopic probe to determine the donor strength of bis-NHC ligand48, whereby strong donating ligands lead to a more downfield shift (Figure 2). Amongst the NHCs studied herein, the weakest ligand in complex 2e led to the most upfield carbenoid signal, while the strongest ligand in complex 3e gave rise to the most downfield carbone signal. This order of the values of 13C{1H} NMR was also practically observed with the ease of formation of silver(I) complexes from their respective ligands, the 3e synthesized fastest whereas the 2e was the slowest.

Computational studies

Although efforts have been made to obtain the crystal structure of the synthesized NHC complexes as well as ligands using various methods of crystallization in different solvents and by changing counters ions of the ligand, not a single X-ray crystal structure was acquired through these experiments. This prompted us to take up computational studies of these complexes. Therefore, we derived the molecular structures from already obtained X-ray structures of similar types of complexes by DFT. To obtain insight on the electronic structure of all the silver(I), gold(I) and palladium(II) NHC complexes 1–4, their molecular structures were designed based on their different spectroscopic and analytical data. The X-ray structure of CCDC-928696 was rearranged and designed into a hypothetical molecule according to the spatial arrangement and proximity of the donor site of the bis-NHC ligand with the metal centre. Then DFT study was carried out using coordinates adopted from these hypothetically designed structures. The electronic structure of this hypothetical molecule was computed at the B3LYP/SDD, 6-31G(d) level of theory and single-point calculation was performed at the same level of theory for detailed prediction of the electronic properties, obtained with the output of geometry-optimized structure of complex 1e (Figure 3). After designing the hypothetical computed molecular
structures of all other complexes, similar computational studies were performed on them using the coordinates of their respective hypothetical structures. Finally, the output was geometry-optimized structures of their respective complexes.

The Ag(I) and Au(I) complexes exhibit linear geometry, whereas the Pd(II) complex fits into the square planar geometry where all the ligands are bidentate, which bind to a single metal ion in a chelated fashion. These were obtained with the general formula for such types of complexes as \([L(L'\text{-NHC})_2]M\)Cl (M = Ag, Au) and \([L(L'\text{-NHC})_2]Pd\)Cl₂, and hence the ligands were designated as the chelating bis-NHC-type.

In general, the optimized bond lengths and bond angles of the computed output structure are in good agreement with those of the adopted X-ray crystallographic structures as well as the reported structures of such types of silver(I)\(^{48-51}\), gold(I)\(^{21,52-55}\) and palladium(II)\(^{16,43,48,56-59}\) complexes. Moreover, the geometry-optimized electronic structures for (1e-g), 2e, 3e, and 4e were obtained along with their characteristic bond lengths and bond angles using computational method.

Electronic properties

Electronic spectra of complexes 1e and 3e were measured in chloroform solution (Figure 4). Both the complexes display an intense absorption band at 255 nm that is similar in position and band shape to their carbene precursors 1d and 3d, which show absorption at 210–220 and 255 nm respectively. Therefore, these bands can be assigned to \(\pi-\pi^*\) aromatic intraligand transitions.

The experimental part includes synthetic procedures for all the compounds of Schemes 1 and 2, which are presented in the supplementary information. It also covers spectroscopic and analytical data of these compounds (Supplementary Figures S1–S102), computational structures of the complexes (Supplementary Figures S103–S107) and coordinates (Supplementary Tables A1–A5).

Conclusion

In summary, axially chiral and racemic ligand precursors and Ag, Au and Pd bis-NHC complexes have been prepared from the scaffolds of enantiopure R-BINOL and racemic biphenol. These chiral bis-NHC complexes 1e, 2e, 1f and racemic complexes 3e and 4e were characterized and analysed using \(^1H\)NMR and \(^{13}C\)\(^{\text{(1H)}}\)NMR spectra, HRMS data and elemental analysis. Studies of Ag(I), Au(I) and Pd(II) complexes based on their different characterization data reveal the formation of axially chiral BINOL-based and achiral biphenol-based bis-NHC chiral and racemic complexes. Computational studies further reveal the geometry-optimized molecular structures of these complexes.

8. Yang, J., Zhang, R., Wang, W., Zhang, Z. and Shi, M., Axially chiral N-heterocyclic carbene gold(I) complex catalyzed asymmetric Friedel-Crafts/cyclization reaction of nitrogen-tethered...

initiator for the bulk ring-opening polymerization of L-lactide.

ACKNOWLEDGEMENTS. I thank the Department of Science and Technology, New Delhi (grant number SR/S1/IC-15/2011) and IIT Bombay (research fellowship) for financial support. I also thank my Ph.D supervisor Prof. Prasenjit Ghosh for guidance and support; the Department of Chemistry, IIT Bombay for Central Facility and Dr Tulika Gupta for help in computational chemistry-related work.

Received 22 May 2019; revised accepted 16 December 2019

doi: 10.18520/cs/v118/i7/1035-1041