
RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 115, NO. 2, 25 JULY 2018 249

*For correspondence. (e-mail: acharya.vishwanath@iiitb.org)

Classification of SDSS photometric data using
machine learning on a cloud

Vishwanath Acharya*, Piyush Singh Bora, Karri Navin, Anisha Nazareth,
P. S. Anusha and Shrisha Rao
International Institute of Information Technology-Bangalore, 26/C, Electronics City, Bengaluru 560 100, India

Astronomical datasets are typically very large, and
manually classifying the data in them is effectively
impossible. We use machine learning algorithms to
provide classifications (as stars, quasars and galaxies)
for more than one billion objects given photo-
metrically in the Third Data Release of the Sloan Digi-
tal Sky Survey (SDSS-III). We have used kNN, SVM
and random forest algorithms in a distributed envi-
ronment over the cloud to classify 1,183,850,913
unclassified photometric objects present in the SDSS-
III catalog. This catalog contains photometric data for
all objects viewed through a telescope and spectros-
copic data for a small part of these. Although it is
possible to classify all the objects using spectroscopic
data, it is impractical to obtain such data for each one
of them. To classify such a big dataset on a single
machine would be impractically slow, so we have used
the Spark cluster computing framework to implement
a distributed computing environment over the cloud.
We found that writing results (dozens of gigabytes) to
the cloud storage is very slow while using kNN.
Though writing the results with SVM is faster as it is
done in parallel, its accuracy is only around 87%, due
to lack of a kernel implementation of it in Spark. We
then used the random forest algorithm to classify the
entire set of 1,183,850,913 objects with an accuracy of
94% in about 17 hours of processing time. The result
set is significant as even collecting spectroscopic data
for these many objects would take decades, and our
classifications can help astronomers and astrophysic-
ists carry out further studies.

Keywords: Astronomical data, classification, cloud
computing, distributed algorithms, machine learning.

ASTRONOMICAL datasets are typically very large. The
Sloan Digital Sky Survey (SDSS)1,2 catalog is a large col-
lection of astronomical data which comprises the most
detailed three-dimensional maps of the Universe, with
deep multi-colour images of one-third of the sky, and
spectra for more than three million astronomical
objects. One of the problems faced while processing
astronomical data is to accurately and efficiently classify

observed celestial objects. Classically, when an object was
first observed through a telescope, its data was recorded
manually and further manual calculations were performed
over such data which facilitate in classifying the recorded
object as belonging to a particular type of celestial object,
say star or galaxy. This approach is infeasible given the
sizes of contemporary astronomical datasets.
 Processing the entire data from SDSS, even with the
most efficient algorithms, takes enormous amounts of time
and resources. In the SDSS dataset of our interest, there are
two kinds of observational data – spectroscopic and pho-
tometric. Different types of objects in the spectroscopic
catalog each have a well-described spectrum. Based on
the spectral characteristics like redshift, emission peaks,
absorption peaks, etc., each object has been classified as
a star, quasar or galaxy. SDSS cannot get the spectrum
data for all its objects, as it takes about an hour apiece to
measure each spectrum; to get data for all the objects
viewed would take hundreds of years. The photometric cat-
alog contains colour data about all the objects viewed so
far, including objects in the spectroscopic catalog. The co-
lour of the object is measured in five filters: ultraviolet (u),
green (g), red (r), and infrared (i) and (z). There are a total
of 1,183,850,913 objects in the photometric catalog, out of
which only 3,751,358 are spectroscopically classified,
while the others are unclassified.
 Here we have used machine learning algorithms over
the Spark framework3 to classify the entire unclassified
dataset of objects as stars, quasars or galaxies.
 Before we delve into further details about the data, we
describe the terms ‘machine learning’ and ‘Spark’ to
indicate some context for the work that is described later.
 Machine learning4 is an approach which automates the
process of making predictions for new unclassified data,
based on available classified data. (We used spectroscop-
ic data to train the model and make predictions over the
photometric data.) Some of the standard algorithms for
supervised learning are kNN, SVM, random forest, etc.
(We were able to get good results using the random forest
algorithm.)
 Apache Spark5 is a cluster computing framework to
handle big data processing. It works in a manner similar
to traditional Hadoop MapReduce, but is much faster.
The basic working of MapReduce is to split the input into

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 115, NO. 2, 25 JULY 2018 250

several parts and run a program on these separate parts in
parallel at once. Though Spark’s functioning is similar to
MapReduce, it is much faster than the Hadoop5 because it
uses the concept of resilient distributed datasets (RDDs),
which reduces the number of read/write operations to
disk. Spark stores the data in the form of an RDD and
persists to disk only when necessary, which reduces
read/write times and makes Spark a fast engine for large-
scale data processing. It is over 100 times faster than Ha-
doop MapReduce.
 We use the astronomical dataset available at SDSS. We
utilize only the photometric data of the different classi-
fied objects (the objects are classified manually using
their spectroscopic data) to train our algorithms, which
we then use to identify quasars, stars and galaxies from
the unclassified objects.
 In order to store such huge amounts of data and make
them available across all platforms for accessing, they
should be live always. For this purpose, we have used the
cloud platform which not only provides the storage but
also makes it easy to run programs over the data. Cloud
computing is an all-in-one tool which provides computing
services such as storage, networking, analytics, etc., over
the internet.
 Here we have used the Google Cloud6 platform for our
entire environment set-up. Google Cloud provides the in-
frastructure to run a complete machine learning project. It
also frees the users from the overhead of managing and
configuring networks. It provides the users with data ana-
lytics services to study and analyse the existing data. One
such service that we have used is Google Dataproc,
which allows the users to create and run Spark frame-
works over the cloud. Using the features of Google Data-
proc, we have set up our cluster environment. We have
then created machine learning models from our training
data and used those models to predict the class of each
photometric object.
 Thus, with the help of machine learning and our cloud
set-up, we could automate the entire process by bypassing
the need of human intervention and automating the calcu-
lation part. Typically, the spectroscopic SDSS data are
classified based on their u, g, i, r and z parameters7.
Using these parameters they measure the bivariate distri-
bution of r* luminosity with half-light surface brightness,
intrinsic g*–r* colour and morphology. Based on these
measurements, each object is classified as a star, galaxy
or quasar. This work would be time-consuming and slow
when it has to be done for around 1,183,850,913 objects,
were it not for the cloud set-up. Under such circums-
tances, the combined power of machine learning and
distributed computing can become a boon to the astro-
nomical community. Although machine learning algo-
rithms automate the process of making predictions for
new data, making predictions for the entire SDSS dataset
in a single machine would take an inordinate amount
of time. So in order to reduce the time, we have used

distributed computing, a computing model in which the
operations are distributed among the different systems in
a cluster to improve performance8. Spark is a distributed
framework which is used for large-scale data processing.
Initially we put in place a distributed set-up over the
cloud using Spark framework. We then applied the ran-
dom forest algorithm which yielded better results for both
binary as well as multi-class classifications, when com-
pared to kNN and SVM implementations of Spark. (We
however describe the kNN and SVM implementations al-
so, as they are standard algorithms and their implementa-
tions carry important lessons.)
 Classifying even a mere 500,000 objects (a tiny frac-
tion of the photometric catalog) spectroscopically would
have taken approximately 57 years using standard astro-
nomical tools. However, with Spark over cloud using
machine learning techniques, we were able to classify the
entire dataset in less than a day with an accuracy of 94%.
Both our source code and result data are available on the
cloud (http://tiny.cc/astro-sdss and the result data at
https://doi.org/10.6084/m9.figshare.5143255.v1). Therefore
this approach would be of use to the astronomy community.

Related work

There have been several efforts at using machine learning
with astrophysics data; Zhang and Zhao9 survey this
domain well. Such efforts, however, have mainly focused
on the problem of classifying relatively smaller datasets
like the Supernova Legacy Survey (SNLS) dataset10,11.
The main focus of relevant existing work is to implement
various machine learning techniques over a small dataset
and identify the model which gives the best accuracy
among them. In all such related works, attempts have
been made to implement machine learning algorithms
over a centralized system, without taking full account of
scalability. As a consequence, though these efforts are
generally successful on a small scale, they cannot be ex-
pected to work on complete, large datasets like SDSS-III.
 The objective in this study is twofold; first is the use of
distributed processing techniques (unlike the centralized
ones seen elsewhere12–15, which are not scalable); and the
second is the classification of the entire SDSS-III dataset,
rather than small fragments of SDSS or other astronomi-
cal data, as done elsewhere16. The basic techniques of
machine learning are well known and used all over, but to
run them at scale in a large distributed setting is what is
done in this study.

Problem formulation

Algorithms and dataset

Our aim is to classify the entire SDSS-III photometric
data into stars, quasars and galaxies. This in turn requires

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 115, NO. 2, 25 JULY 2018 251

us to set up a cloud environment and apply different
machine learning classification algorithms to choose the
best among them, which can classify the entire data accu-
rately abiding by the evaluation metrics, within a reason-
able amount of time. We have used certain standard
evaluation metrics to measure the performance of the
classifier. The entire result of this classification is shared,
which is useful to the astronomical community or any
independent researcher.

Distributed environment set-up

The unclassified dataset from the SDSS III catalog is
very large. To store such huge data and run machine
learning algorithms for classification on local machines
would require very high computing power, and a large
data storage. To handle this issue we have used the
Google Cloud services to set up a cluster for distributed
computing, and the Apache Spark framework to distribute
our jobs among the machines in the cluster.

Cluster set-up over the cloud

Google Cloud provides the Dataproc17 service to process
large quantities of data easily. It provides Apache Ha-
doop, Apache Spark, Apache Pig and Apache Hive ser-
vices to handle large datasets. We have used the Apache
Spark framework for cluster management over Google
Dataproc. The steps that we have followed to set up a
cluster and run Spark jobs over the cluster are: (1) Initial-
ly we set up a project over the cloud to use the Google
Cloud services; (2) We created four instances, each of
which had 7.5 GB RAM: one for master node and the re-
maining three for worker nodes; (3) These instances were
used to set up a cluster using the Dataproc service of
Google Cloud; (4) Cloud storage was used as common
for storing training data, testing data and programs to
be run on the cluster; (5) Using the Dataproc GUI, we
could submit the jobs to the cluster using the Spark
framework.
 Figure 1 shows the basic architecture of our Google
Cloud environment. Spark programs run as independent
sets of processes on the cluster, coordinated by the Spark-
Context object in our main program. Spark acquires
executor nodes of the cluster. It then sends the applica-
tion code to these nodes and makes the executor nodes
run the tasks in a parallel manner. Figure 2 shows an
overview of Spark cluster management.

Data collection from SDSS catalog

The data used were obtained from SDSS1,2. The data are
of two kinds: spectroscopic and photometric. The spec-
troscopic data were taken from the DR12 (Data Release

12) Spectroscopic Catalog, and the photometric data from
the DR12 Photometric Catalog18.
 The classified data from the Spectroscopic Catalog
have the following format:

ObjID, class, u, g, r, i, z
where ObjID is the unique object ID.

The unclassified data, from the Photometric Catalog, has
the following format:

ObjID, class = null, u, g, r, i, z
where ObjID is the unique object ID.

The SDSS database contains two main tables which are
of interest to us: SpecObj and PhotoObj. The SpecObj
table contains spectroscopic data (including the class) of
spectroscopically classified objects, and the PhotoObj
table contains photometric data (the colour data) of all
identified objects. The SpecObj table contains a small
subset of the objects in the PhotoObj table (those that
have been classified). The SQL query used to retrieve our
training data is as follows:

SELECT p.objID, s.class, p.u, p.g,
p.r,p.i, p.z FROM SpecObj AS s JOIN
PhotoObj AS p ON s. bestObjID = p.
objID WHERE (p.type = 3 OR p.
type = 6).

Table 1 shows the result format of the above query.
 This query does a full join between the SpecObj and
PhotoObj to get the classes and colours of all the objects

Figure 1. Google Cloud environment.

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 115, NO. 2, 25 JULY 2018 252

Figure 2. Spark cluster management.

Table 1. Training data

Object ID Class u g r i z

1237645879551000764 GALAXY 18.55396 25.91849 19.23725 20.98709 18.41879
1237645879551066262 GALAXY 17.20153 19.41061 17.58132 19.41061 16.90159
1237645879562862699 STAR 19.28224 18.95554 19.03111 20.14984 18.78287
1237645879580098737 QSO 20.11118 19.53674 20.00373 20.19055 19.36661

Table 2. Testing data

Object ID u g r i z

1237645943435034783 18.55396 25.91849 19.23725 20.98709 18.41879
1237645943435034775 17.20153 19.41061 17.58132 19.41061 16.90159
1237645943434969150 19.28224 18.95554 19.03111 20.14984 18.78287
1237645943433396364 20.11118 19.53674 20.00373 20.19055 19.36661

in SpecObj. The query used to retrieve our testing data is
as follows.

SELECT p.objID, p.u, p.g, p.r, p.i,
p.z FROM PhotoObj AS p LEFT OUTER JOIN
SpecObj s ON p. objID = s. bestObjID
WHERE (p. type = 3 OR p. type = 6)
AND s. class is NULL.

Table 2 shows the result format of the above query. This
query does a left outer join between the SpecObj and the
PhotoObj to get the colours of all the objects in PhotoObj
where the class is null.

Implementation of kNN and SVM over the data

Our initial approach was to run the kNN and SVM algo-
rithms using Spark distributed framework. These algo-
rithms did not give the best results, but we report these
negative outcomes as they are of interest.

 The kNN4 algorithm classifies a new data point based
on the majority of the classes of the k nearest training
samples to that data point. In our case, the attributes of
the object are colours and based on the majority of co-
lours near the data object, the algorithm decides the class
of each object.
 There is no direct implementation of kNN in Spark, so
we implemented distributed kNN over Spark using the
scikit-learn library19. The basic steps to implement distri-
buted kNN over Spark are as follows.

• Create a Spark context for the program.
• Read the training data from cloud storage and store it

as an RDD object.
• For each of these objects compute features as g–r,

u–r, r–i, i–z and store them as an RDD object.
• Convert this RDD object to a stack of numpy tuples20.
• Create a dataframe to store all the classes correspond-

ing to the respective objects.
• Using scikit-learn, create a kNN model using features

and classes obtained in steps 4 and 5.

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 115, NO. 2, 25 JULY 2018 253

• Create a corresponding broadcast object for the model
to distribute the job.

• Read the testing data from cloud and perform steps 2
and 3.

• Using the broadcasted model, predict the class of each
object in a parallel manner.

• Finally write the results onto cloud storage.

There were some problems with this kNN implementa-
tion. First, the accuracy was not satisfactory, as it was
around 87%. Due to data conflicts between scikit-learn
and Spark, the writing operation was taking linear amount
of time, which would have required a month to classify
the entire SDSS III data.
 We then used SVM4 for binary classification of SDSS
data. The basic concept of SVM is to construct a hyper-
plane based on the training dataset. It then uses this mod-
el to classify the dataset based on which side of the hyper
plane the test data belong. According to SVM, there are
two groups of data. If the data points are separable by
drawing a straight line with all points of one class on one
side of the line and all the points of other class on the
other side, then such data are linearly separable. For those
data which are not linearly separable, they are trans-
formed to higher dimensions using kernel functions to
make them separable at higher dimensions. The Spark
implementation of SVM is linear21. It is based on the loss
function formulated by hinge loss22.
 As our data were not linearly separable, the linear
SVM of Spark did not give satisfactory results and the
accuracy was also around 87%. Though the issue of writ-
ing the results to the cloud in parallel was solved using
SVM, the accuracy was still not satisfactory. Due to lack
of a kernel implementation of SVM in the Spark frame-
work, we were not able to improve the accuracy of the
SVM model to more than 90%.

Random forest implementation

Random forest algorithm

Random forests are ensembles of decision trees23. Deci-
sion trees build classification models in the form of tree
structures. A dataset is broken down into smaller and
smaller subsets, while at the same time an associated deci-
sion tree is incrementally developed. The final result is a
tree with decision nodes and leaf nodes. A decision node
has two or more branches. Each leaf node represents a clas-
sification or decision. It constructs the tree using an in-
formation-theoretic entropy function. The entropy function
represents the information gain of each of the data points.
 The internal unit model used in the random forest algo-
rithm is that of a decision tree. The random forest
algorithm builds a set of decision trees separately. The
algorithm produces different trees by injecting some ran-

domness in the construction of each decision tree. It then
combines the predictions of each tree to predict the final
class of the object, which reduces the variance and im-
proves the performance of the predictions made on the
test data.

Reasons for choosing the random forest algorithm

The random forest algorithm not only gives good results
for binary classification, but it also can be extended for
multiclass classification23. It does not require feature
scaling. The algorithm is capable of capturing nonlinear
information inherent in the data. Additionally, it can
capture feature interactions.

Training data and parameters used

Here we have used pySpark implementation of random
forest over the Google Cloud environment3. The parame-
ters used for training decision trees are g–r, u–r, r–i, i–z.
These parameters along with the 500,000 classified
objects are given as input to the algorithm to build a set
of decision trees. This training of multiple decision trees
is done in parallel with the use of the Spark framework.

Model construction

The master node of the cluster fetches the training dataset
from the Google Cloud storage and stores it as an RDD
object inside the Spark context. Using this RDD object, it
then distributes the training job to all the worker nodes in
the cluster to produce the final model. For distribution of
jobs within the cluster, the map function of pySpark is
used. During this training process, the algorithm attempts
techniques like sub-sampling of the original dataset at
each iteration and considering different random sets of
features to split on at each tree node, to inject randomness
in the construction of decision trees. We have used this
algorithm for both binary classification and ternary
classification of SDSS data. For binary classification,
each training object is labelled as 0 for quasar and 1 for
non-quasar objects. The same approach is followed to
classify into other types such as stars and galaxies. For
ternary classification, training objects are labelled as 1
for quasars, 0 for stars and 2 for galaxies.

Final prediction

Prediction of objects classes is done by aggregating the
results from all decision trees. The class of an object is
decided based on majority voting. Each tree prediction is
counted as a vote for one class. The class is predicted to
be that which receives the most votes.

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 115, NO. 2, 25 JULY 2018 254

Box 1. Pseudocode for ternary classification

1 # Creating Spark Context for the cluster environment
2 sc = SparkContext (‘local’, ‘test_script‘)
3 # Reading Training file from Google Cloud
4 data = sc. textFile (trainingFile)
5
6 # Defining Method to compute features and assign labels to each object
7 def parsePoint (line):
8 Assign label as 0 for star , 1 for quasar and 2 for galaxy
9 Compute g–r,u–r, r–i, i–z as features for each object
10 return LabeledPoint (label , features)
11
12 # Removing Header from the training file
13 header = data .first ()
14 data = data . filter (lambda line : line != header)
15 # Parsing the training file as per the method defined above
16 parsedData = data .map(parsePoint)
17 # Create a model using Random Forest Algorithm
18 model = RandomForest . trainClassifier (parsedData , numClasses = 3,
 categoricalFeaturesInfo={}, numTrees = 21, featureSubsetStrategy=‘auto‘,
 impurity =’ entropy’, maxDepth = 20, maxBins = 32)
19 testData = sc. textFile (testingFile)
20
21 # Defining Method to parse the testing file
22 def parseTestData (line):
23 Assign object ID as label for each object
24 Compute g–r, u–r, r–i, i–z as features for each object
25 return (label , features)
26
27 # Parsing the testing file as per the method defined above
28 parsedTestData = testData .map(parseTestData)
29
30 # Making predictions using the model created in line 18
31 predictions = model. predict (parsedTestData .map(lambda x: x[1]))
32 labelsAndPredictions = parsedTestData .map (lambda lp: lp [0]) .zip(predictions)
33
34 # Defining Method to parse the results
35 def getResults (t):
36 Assign object ID as label
37 Assign feature as STAR, GALAXY, QSO for 0, 2, 1 respectively
38 return (label, features)
39
40 # Parsing the results as per the method defined above
41 resultList = labelsAndPredictions .map(getResults)
42 #Save the results back to the cloud
43 resultList . saveAsTextFile (destination)

Writing final results

In this study we had 1,183,850,913 unclassified objects.
These were stored in the Google Cloud storage. The
objects were read from the storage and stored as an RDD
object in the Spark context. Using this RDD object, the
job of predicting the class for the object was distributed
across the worker nodes of the cluster, using model from
training step. This result of prediction was stored back
into the Google Cloud Platform by writing it into a csv
file in a parallel manner.

Explanation of the pseudocode for ternary
classification

In line 2 in Box 1, the Spark context is created to handle
all Spark jobs in the cluster. In line 4, the training file is
read from Google Cloud storage and stored as an RDD
object inside the Spark context. From lines 7 to 11, a me-
thod parsePoint is defined which splits each data
object of the training file into labels and features. For
labels it assigns 0 for star, 1 for quasar and 2 for galaxy.
It computes g–r, u–r, r–i, i–z values for each object and

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 115, NO. 2, 25 JULY 2018 255

Table 3. Original data – sample

Object ID u g r i z

1237645879551000764 20.98709 18.55396 19.23725 25.91849 18.41879
1237645879551066262 18.23754 17.20153 17.58132 19.41061 16.90159
1237645879562862699 19.28224 18.95554 19.03111 20.14984 18.78287
1237645879580098737 20.11118 19.53674 20.00373 20.19055 19.36661
1237645943973675227 20.77234 18.22479 19.19735 23.54567 17.63784
1237645943435034783 18.95963 16.81595 17.58961 21.46995 16.40388
1237645943435034775 18.50592 16.20174 17.0387 21.10589 15.65076

Table 4. Results – sample

Object ID Class

1237645879551000764 GALAXY
1237645879551066262 GALAXY
1237645879562862699 STAR
1237645879580098737 QSO
1237645943973675227 GALAXY
1237645943435034783 STAR
1237645943435034775 STAR

assigns them as features for those objects. From lines 13
to 14, it removes the header from the testing file. In line
16, it calls the parsePoint with the training file RDD ob-
ject as an argument and collects the parsed training file
into another RDD object. In line 18, it creates a model
using the random forest algorithm over the parsed RDD
object created in line 16. In line 19, it reads the testing
file from the Google Cloud storage and stores it as an
RDD object. From lines 22 to 25, it defines a method par-
seTestData, which splits the testing file as labels and fea-
tures for each object. The object ID is assigned as
label and the values of g–r, u–r, r–i, i–z as features for
each object of the testing file. In line 28, it calls the me-
thod parseTestData with the testing file RDD object as an
argument to function and collects the parsed testing file
into another RDD object. In line 31, using the model
created in line 18, it makes predictions for each of the
testing file objects and collects the results of the classifi-
cation into an RDD object. From lines 35 to 41, it defines
and calls a method getResults which converts the result
RDD object into a readable format by converting labels
back to their respective classes. In line 42, it writes re-
sults back to the Google Cloud storage.

Results

The results of this study are stored in several large comma-
separated values (CSV) files. Each row stores the
object ID and the corresponding class to which it belongs.
Tables 3 and 4 show the format of our original dataset
and the results respectively. The classified results of the
entire 1,183,850,913 unclassified objects took around
17 h of processing, and the total size of the classified data

is around 40 GB. They have been divided into 7 files,
each about 600 MB in size and containing the results of
approximately 1.3 × 107 unclassified objects. The results
are available online (https://doi.org/10.6084/m9.figshare.
5143255.v1).

Results of binary versus multiclass classification

A binary classification is a concept of predicting the
classes from a two-class problem, whereas in multiclass
classification we are concerned with the class of an object
as being one among more than two possible classes. Our
initial work was on binary classification of data into qua-
sars and non-quasars. Figure 4 shows the Mollweide pro-
jection of a sample of our binary classification results.
 The most common measure to assess the performance
of a classifier is accuracy, but it ignores many of the fac-
tors which should be taken into account when assessing
the classifier. Accuracy just gives an idea about the count
of correct classifications. This count alone might not be a
good classification measure for certain datasets. In
particular for SDSS data, 90% of the objects are
non-quasars. So any classifier which would classify entire
data into non-quasar would get an accuracy of 90% which
seems impressive, but that figure ignores all quasar ob-
jects in the data. In order to get a better assessment of the
classifier we have used a receiver operating characteris-
tics (ROC) graph24. This technique assesses the perfor-
mance of the classifier. This is especially useful for
domains like SDSS, where the data have skewed class
distribution. ROC graphs are two-dimensional, in which
true positive rate is plotted on the y-axis and false posi-
tive rate on the x-axis. An ROC graph depicts the trade-
offs between true positive and false positive. Here we
have used spark implemented ROC metric to measure
accuracy and precision of random forest classifier, and
Table 5 presents the results.
 The random forest algorithm for binary classification
gave an accuracy of 94%. The same approach was used
for binary classification of stars and galaxies. The accu-
racy for all these categories was around 94%.
 For multiclass classification, we classified the data into
quasars, stars and galaxies. Using the random forest
algorithm for multiclass classification, we were able to

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 115, NO. 2, 25 JULY 2018 256

Table 5. Confusion matrix

Algorithm TP FN FP TN Accuracy Precision

Binary classification 9290 3594 2315 84960 0.94100 0.80051

Table 6. Results for all algorithms

Algorithm TP FN Fp TN Accuracy Precision

kNN 460 12421 781 86800 0.88734 0.37066
SVM 428 12401 813 86820 0.86846 0.34488
Random forest 9290 3594 2315 84960 0.94100 0.80051

Figure 3. a, Binary versus ternary classification. b, Binary versus multiclass classification.

Figure 4. Mollweide projection of sample of binary classification
results28,29.

achieve an accuracy of 92%. Table 5 gives a summary of
the results for binary classification.

Parameters relevant to accuracy

The main parameters that are relevant to the accuracy of
the algorithm are described below.

Number of trees: A general tendency of decision trees is
to overfit to the given data. According to the bias
variance lemma, a model which is prone to over-fitting is

highly unstable25. This suggests that a decision tree is
very sensitive to any slight change of data. This property
of decision trees leveraged by the random forest algo-
rithm to build diverse models using only a subset of data
and features to construct a decision tree. As the trees are
diverse from each other, increasing the number of trees
decreases the variance in predictions, improving the
models test-time accuracy. We found that when the num-
ber of trees was 10, the algorithm gave an accuracy of
90% for binary classification and 87% for three-way clas-
sification. By increasing the number of trees from 10 to
50 improved our accuracy to 94% for binary classifica-
tion and 92% for three-way classification (Figure 3 a).
However, after this point, the accuracy remained the
same but increasing the number of trees increased train-
ing time linearly. Increasing the number of trees above
100 might yield slightly better results, but it might take
much longer to just train the model; so for the entire
process of training and testing, it might take more than a
day.

Maximum tree depth: This parameter implies the maxi-
mum depth each tree can take in the algorithm. Increasing
the tree depth makes the model more expressive and po-
werful. With a maximum depth of 20, we were able to
achieve an accuracy of 94% for binary classification and
92% for three-way classification (Figure 3 b).

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 115, NO. 2, 25 JULY 2018 257

Summary of all algorithms used

Initially, we used the kNN and SVM algorithms to train
our model. The accuracy for both kNN and SVM algo-
rithms over the SDSS data was around 87%. Using the
random forest algorithm we were able to achieve better
accuracy for both binary classification (94%) and multic-
lass classification (92%) of the dataset. Table 6 provides
a summary of all the results.

Conclusion

The random forest algorithm worked well for SDSS
data1. We ran the algorithm over the cloud using the
Spark framework3. We were able to classify the entire
dataset of 1,183,850,913 objects into stars, quasars and
galaxies with an accuracy of 92%. These objects could be
used to identify the distribution of quasars, stars and
galaxies in the sky, which in turn can lead to new insights
about them.
 It seems unlikely that any substantial gain in classifica-
tion accuracy would result using any other algorithms or
approaches on the same dataset, given the classical wis-
dom that ‘invariably, simple models and a lot of data
trump more elaborate models based on less data26. How-
ever, some significant gains could well occur if more
spectroscopically classified data (training data) were
available. However, given more such training data, better
algorithms may also be possible27.

1. Eisenstein, D. J. et al., SDSS-III: massive spectroscopic surveys
of the distant universe, the Milky Way, and extra-solar planetary
systems. Astron. J., 2011, 142, 72.

2. Dawson, D. J. S. K. S. et al., The Baryon oscillation spectroscopic
survey of SDSS-III. Astron. J., 2013, 145, 10.

3. https://spark.apache.org/docs/1.2.0/cluster-overview.html
4. Witten, I. H., Frank, E., Hall, M. A. and Pal, C. J., Data Mining:

Practical Machine Learning Tools and Techniques, Morgan
Kaufmann, 2016.

5. http://hadoop.apache.org/
6. https://cloud.google.com/
7. Blanton, M. R. et al., The luminosity function of galaxies in SDSS

commissioning data. The Astron. J., 2001, 121(5), 2358.
8. Peleg, D., Distributed Computing: A Locality-Sensitive Approach,

Society for Industrial and Applied Mathematics, 2000.
9. Zhang, Y. and Zhao, Y., Astronomy in the big data era. Data Sci.

J., 2015, 14.
10. Supernova legacy survey, 2005; https://tspace.library.utoronto.ca/

handle/1807/25390.
11. Möller, A. et al., Photometric classification of type Ia supernovae

in the SuperNova Legacy Survey with supervised learning. J.
Cosmol. Astropart. Phys., 2016, 12, 008.

12. Ostrovski, F. et al., VDES j2325-5229 a z = 2.7 gravitationally
lensed quasar discovered using morphology-independent super-
vised machine learning. Mon. Not. R. Astronom. Soc., 2017,
465(4), 4325–4334.

13. Lochner, M., McEwen, J., Peiris, H., Lahav, O. and Winter, M.,
Photometric SN classification with machine learning. In Kavli
Institute for Cosmological Physics Workshop on Photometric
Classification of SNIA, Chicago, IL, USA, April 2016.

14. Miller, G. and Berger, E., PS1 classification of SN using ensemble
decision tree methods. In Kavli Institute for Cosmological Physics
Workshop on Photometric Classification of SNIA, Chicago, IL,
USA, April 2016.

15. Moeller, A., SN photometric classification of SNLS data with
supervised learning. In Kavli Institute for Cosmological Physics
Workshop on Photometric Classification of SNIA, Chicago, IL,
USA, April 2016.

16. du Buisson, L., Sivanandam, N., Bassett, B. and Smith, M., ‘
Machine learning classification of SDSS transient survey images.
Mon. Not. R. Astronom. Soc., 2015, 454(2), 2026–2038.

17. https://cloud.google.com/dataproc/.
18. Alam, S. et al., The eleventh and twelfth data releases of the Sloan

Digital Sky Survey: final data from SDSS-III. Astrophys. J.
Suppl., 2015, 219, 12.

19. Pedregosa, F. et al., Scikit-learn: machine learning in python.
J. Mach. Learn. Res., 2011, 12, 2825–2830.

20. Oliphant, T. E., A Guide to NumPy, Trelgol Publishing USA,
2006, vol. 1.

21. https://spark.apache.org/docs/1.6.0/api/python/pyspark.mllib.html
#pyspark.mllib.classification.SVMModel

22. Rennie, J. D. M. and Srebro, N., Loss functions for preference le-
vels: regression with discrete ordered labels. In Proceedings of the
IJCAI Multidisciplinary Workshop on Advances in Preference
Handling, Kluwer Norwell, MA, 2005, pp. 180–186.

23. Hartshorn, S., Machine Learning with Random Forests and Deci-
sion Trees: A Visual Guide for Beginners, Amazon Kindle, 2016.

24. Fawcett, T., An introduction to ROC analysis. Pattern Recognit.
Lett., 2006, 27(8), 861–874.

25. Genuer, R., Variance reduction in purely random forests.
J. Nonparametr. Stat., 2012, 24(3), 543–562.

26. Halevy, A., Norvig, P. and Pereira, F., The unreasonable effec-
tiveness of data. IEEE Intell. Syst., 2009, 24(2), 8–12.

27. Zhu, X., Vondrik, C., Fowlkess, C. C. and Ramanan, D., Do we
need more training data? Int. J. Comput. Vis., 2016, 119(1), 76–
92.

28. Lapaine, M., Mollweide map projection, 2011; http://master.
grad.hr/hdgg/kogstranica/kog15/2Lapaine-KoG15.pdf

29. Martin, E., The Mollweide projection, 2013; http://balbuceo-
sastropy.blogspot.in/2013/09/the-mollweide-projection.html

ACKNOWLEDGEMENTS. We thank Shiva Kumar Malapaka and
Ramya Sethuram for their advice on the presentation of this work and
acknowledge SDSS-III survey for the data used in this work. Funding
for SDSS-III has been provided by the Alfred P. Sloan Foundation, the
Participating Institutions, the National Science Foundation, and the US
Department of Energy Office of Science.

Received 12 July 2017; revised accepted 5 April 2018

doi: 10.18520/cs/v115/i2/249-257

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

