The Malanjkhand and Dongargarh granitoids are compared to study the role of accessory minerals (apatite, zircon, titanite and titanomagnetite) to understand crystallization evolution of Palaeoproterozoic granitic magmatism in the Bastar Craton, central India. Two varieties of titanite (magmatic and hydrothermal types) are observed in the Palaeoproterozoic granitoids. Occurrence of zircon, apatite, titanite and titanomagnetite as accessory phases in the Palaeoproterozoic granitoids indicates that the early stage of crystallization of granitic magma was saturated with Zr, P and Ti. Petrography and mineral equilibria reaction suggest that magmatic titanite in the Palaeoproterozoic granitoids was formed due to hydration of amphiboles and biotites which favours high fO2 and fH2O conditions. Apatite composition suggests that it was formed in the granitic magma at nearliquidus to near-solidus temperature (900–1000°C) which increased fugacity ratio log(fH2O/fH2) and also controlled the halogen budget during magma crystallization. Relatively high halogen content in the apatites from the Malanjkhand Granitoid (MG) indicates that the parental magma was enriched in F and Cl compared to Dongargarh Granitoids (DG), implying a dominant role of halogens in metal transportation and hydrothermal mineralization. In MG, apatite was the earliest phase to be crystallized in granitic magma followed by zircon and titanite whereas, in DG, crystallization of zircon was followed by apatite and titanite. Two contemporaneous plutons, DG and MG, represent a unique Palaeoproterozoic granitic magmatism wherein early progressive crystallization is dominated by accessory mineral saturation in a relatively static environment with constant magma composition.

Keywords: Accessory minerals, Bastar Craton, Dongargarh, granite, Malanjkhand.

The most common accessory minerals which occur in granitic rocks include titanite, apatite, zircon, rutile and monazite, which are regarded as petrogenetic indicators of early stage of crystallization of granitic magma1.6. These minerals preserve the most significant records of magmatic evolution (i.e. generation, segregation, ascent and emplacement) and crystallization history of granitoids (i.e. dissolution, substitution and replacement). Mineral chemistry of these phases helps to constrain various important physico-chemical parameters during their crystallization evolution. The modal abundance of these minerals is less than 1% in granitoids, but their presence in magma may have significant roles upon distribution of various trace elements, rare earth elements (REE) and radiogenic isotopes7. The crystal structures of apatite and titanite as accessory minerals are suited for incorporation of trace elements and REE along with halogens during crystallization of granitic magma7,8. Zircon, rutile, apatite and monazite are particularly suited for geochronologic applications because they contain elements having properties like radioactivity, physicochemical durability and resistance to diffusion re-equilibration10. Enrichment of trace elements in accessory minerals crystallized from fractionating magma or as residual minerals mostly depended on their bulk concentrations in the granitic magma that underwent partial melting11.12. Titanite occurs as accessory mineral in granitoids, and is also found in a wide range of geological environments and also occurs in mafic rocks13. Even though experimental studies suggested that titanites are mostly crystallized from magma at an early stage11,12, there are evidences of occurrences of secondary titanites in granitoids from the Tribec Mountains, Slovakia13, metamorphic terranes of amphibolites-facies metapelites rocks14, shear zone from Carthage-Colton, Adirondack Mountains, New York, USA15, and ultra-high pressure rock from Kokchetav Massif, Kazakhstan16. The coupled substitution of Al and F for Ti and O respectively can lead to titanite deviating from its ideal composition1. For example, Al–OH bearing titanite most probably formed due to decomposition of biotite in low-temperature geological environments by Al + OH ↔ Ti + O substitution mechanism11.

The aim of this study is to understand the role of accessory minerals such as titanite, titanomagnetite and apatite in the evolution of Palaeoproterozoic granitic magmatism in the Bastar Craton of the Indian Subcontinent. The objective is divided into three parts: (1) petrographic and mineralogical studies of accessory minerals (zircon, apatite and titanite); (2) estimating the pressure–temperature
Figure 1.

(a) Study area adjacent of the Central Indian Tectonic Zone in the map of India;
(b) Regional scale geological map of northern Bastar Craton;
(c) Geological map of Malanjkhand and Dongargarh granitoids showing the sample locations (modified after Jain et al.18; Neogi et al.19).

conditions of crystallization of granitic magma from accessory minerals; and (3) studying the crystallization evolution of titanite, zircon, apatite and post-magmatic involvement of hydrothermal processes.

Geological and tectonic settings

The Precambrian shield of Central India is dominantly occupied by the continental block of Bastar Craton17 and ENE–WSW trending Central Indian Tectonic Zone (CITZ) (Figure 1a). CITZ comprises two parallel structural domains: Son–Narmada (SONA) lineament in the north and Sausar Mobile Belt (SMB) in the south. Southern boundary of CITZ is known as the Central Indian Suture (CIS)18,19. The geology of Bastar Craton comprises various litho-units ranging from Early Archean (granite gneisses) to Proterozoic (Malanjkhand and Dongargarh granitoids and its equivalent) in age and preserves a record of several episodes of Precambrian orogenic cycles and metamorphic tectonomagmatic episodes. The Bastar Craton contains three major supracrustal sequences, i.e. the Kotri–Dongargarh, the Sakoli and the Sausar
Supergroup. The Kotri–Dongargarh Supergroup\(^20\) is composed of two litho groups, viz. Nandgaon Group dominated by syenites with subordinate occurrences of dacites, andesites and basalts\(^37\), and the Khairagarh Group which unconformably overlies the Nandgaon Group and consists of volcano-sedimentary sequences of shales and sand-stones\(^22-25\). Subsequently, the stratigraphy of Kotri–Dongargarh Supergroup has been revised into a single Dongargarh group by Sensarma and Mukhopadhyay\(^22-24\). The Sakoli Group consists mainly of low grade metamorphic rocks comprising of slate, phyllites, bimodal volcanic rocks, schists, metabasalts, cherts, conglomerates and Banded Iron Formation\(^26\). The Sausar Group comprises polymetamorphic belt component of the region CITZ and is bounded by granulite belts in the northern and southern side\(^27\). Numerous intrusive mafic dyke swarms such as Gidam–Tongpal, Bhanuratappur–Keskal, Narainpur–Kondagaon and Bijapur–Sukma swarm, cross-cut various granitoids and supracrustal rocks in the Bastar Craton\(^28\). The Chhattisgarh and the Indravati Basin are two major Proterozoic basins comprising thick sedimentary sequences of conglomerates, sandstones, shales, limestones, cherts and dolomites\(^29\).

The Malanjkhand and Dongargarh Granitoids are two prominent Paleoproterozoic litho units in the northern part of the Bastar Craton (Figure 1 b). The Malanjkhand Granitoid (MG) is located in proximity to the south of CIS. Three units of granitoids pluons are located further 50–60 km south of MG. These three granitoid batholiths are known as Dongargarh, Amgaon and Dhanapur–Manpur plutons. Bimodal volcano-sedimentary sequences of Dongargarh Group separate the MG and DG plutons\(^22-24\).

In MG, late stage hydrothermal activities and deuteritic alterations promoted various secondary processes such as saussurization of feldspar, sericitization of mica, chloritization, epidotization which produced various secondary mineral phases such as chloride, hydrothermal epidote and titanite\(^30-37\).

Paleoproterozoic granitic magmatism in Bastar Craton

The area adjoining the southern part of CITZ and western part of Proterozoic Chhattisgarh basin in the central Peninsular India is marked by emplacement of a number of granitoid plutons (Figure 1 b). Among these plutons, Paleoproterozoic Malanjkhand and two units of Dongargarh plutons have been thoroughly studied\(^38-41\). Geochemical studies suggest that the Malanjkhand pluton is granite–granodiorite in composition\(^38,40,41\), whereas Dongargarh pluton is strictly a granite\(^38,40,42\). Kumar et al.\(^43\) and Kumar and Rino\(^41\) proposed that MG originated due to mixing of mafic and felsic magma in various proportions within a dynamic magma chamber and emplaced at shallow crustal level based on field, mineralogical and geochemical evidences. Occurrence of oscillatory zoning in magmatic epidotes reported from MG indicates that there was cyclic change in the oxygen fugacity or bulk composition of granitic magma during crystallization\(^44\). Late-stage hydrothermal activity following the granite emplacement seems to have operated under identical temperature conditions obtained from binary felspar geothermometer and the characteristics of aqueous fluid (salinity and homogenization temperature) in both the granitoids seem to be broadly similar\(^33\). Some petrogenetic aspects of MG including the small leucogranite unit phase have been discussed earlier\(^44,45\). The Paleoproterozoic bimodal large igneous province with subequal volumes of nearly coeval felsic–mafic volcanic rocks occurs in the Dongargarh Group of Bastar Craton, which is driven by a common thermal perturbation melting of the crust and mantle in an extensional tectonic setting\(^46\). Rapid eruption of high temperature Bijli rhylolite in the Paleoproterozoic bimodal Dongargarh Group indicates decompression melting in an extensional setting\(^47\).

Srivastava\(^48\) also suggested that an intracratonic rift setting was responsible for emplacement of numerous mafic dyke swarms and boninite–norite volcanic suite during Neoarchean–Paleoproterozoic. Occurrence and geochemistry of boninite dyke indeed demonstrates that Paleoproterozoic Dongargarh Supergroup represents a fossil subduction zone in the Archean of Bastar Craton\(^49\). Nagananjeyulu and Santosh\(^50\) considered the Mesoproterozoic event to mark the timing of subductioncollision tectonics along the CITZ after examining various geochronological data. Most recently, Kumar et al.\(^51\) suggested the Paleoproterozoic to Mesoproterozoic time interval for extension of central and Eastern Indian Tectonic Zones.

Petrography

Among accessory minerals, the modal abundance of titanite in granitoid is much higher than that of other mineral phases crystallizing from later residual melt\(^52\). In this study, the occurrence of two types of titanites (magmatic and hydrothermal titanites) from the Paleoproterozoic granitoids (MG and DG) in Bastar Craton is being reported for the first time. In MG and DG, titanite occurs in the form of big, stout, euhedral grains measuring up to 1 mm in length. Majority of these titanites are associated with quartz, hornblende, biotite, epidote and plagioclase. Sometimes apatite, zircons and opaque are also present as inclusions within titanite (Figure 2 a–f). This type of titanite shows microtexture similar to that reported from the Ross of Mull Granite, northeastern Scotland and is considered to be of magmatic origin\(^53\). Therefore, such a variety of titanite is referred to as primary or magmatic titanite in this study. Small anhedral lozenge-shaped titanite with irregular grain boundaries is associated with
Figure 2. Photomicrographs showing mineral assemblage with magmatic titanite from the MG: a. Big stout grains of titanite with quartz + hornblende + plagioclase + epidote; b. Euhedral grains of titanite with biotite and quartz; c. Lozenge shaped euhedral titanite with apatite with biotite + quartz; d. Rhombohedral grain of titanite with quartz + K-feldspar. Representative magmatic titanite from DG shows in (e) and (f) with hornblende + plagioclase + quartz mineral assemblages.

Figure 3. Photomicrographs of hydrothermal titanite from the Malanjkhand granitoid: a. Titanite inclusions with altered plagioclase + K-feldspar; b. Titanite inclusions in biotite along with quartz. Reaction rims of hydrothermal titanite on titanomagnetite (ilmenite–magnetite composite) grains within chloritized hornblende phenocrysts from the DG as shown in (c), (d), (e) and (f).

Sassuritized plagioclase (Figure 3 a) and chloritized biotite (Figure 3 b) in MG. Such titanites are compositionally high in Al–OH content and are most probably of secondary origin. Reaction rims of titanite around opaque mineral grains within amphibole are common in DG, which is also one of the characteristic features observed in this granitoid unit (Figure 3 c–f). The width of reaction rims varies between 10 and 15 μm. Most of the opaque phases show composite texture of ilmenite–magnetite grains and most probably titanomagnetite.
few places, it is present as well-grown grains with conspicuous fracturing. The morphology of titanite rims is similar to that reported from four metamorphic and amphibolitic-facies terranes and carboniferous I-type granites/granitoids in the Tribeč Mountains, Slovakia, where it is considered to be of secondary or hydrothermal origin. This type of titanite is referred to as hydrothermal/secondary titanite in the present study.

BSE images of magmatic titanite from MG show two types of zoning classified as oscillatory zoning without inclusion (Figure 4a) and sector zoning with inclusions of apatite (Figure 4b). Mineral grains with oscillatory zoning show evidence for a cyclic alteration in the chemical composition of discrete growth-shells in micrometres to nanometres thickness and such mineral zoning is a common well-concealed phenomenon in rocks of magmatic origin. Occurrence of sector zoning in mineral grains of intrusive rocks suggests a natural consequence of slow lattice diffusion form of homogeneous disequilibrium. These two types of zoning are caused because of chemical variation within titanite grains, which depends on host rock chemistry and remains unaffected by fluid composition during hydrothermal alteration. Sector zoning in magmatic titanite developed due to magma chamber processes, while oscillatory zoning in titanite is originated due to some localized crystallization processes including nonequilibrium crystal growth and coupled-substitution effects. Most of the magmatic titanites in MG are associated with biotite (Figure 4c), whereas apatite is present as inclusions (Figure 4d). It indicates that primary titanate starts growing after formation of apatite during crystallization of granitic magma. Oscillatory zoning in magmatic titanite indicates cyclic change in magma composition and crystallization of oxidized silicic magma. Zones in titanite grains reflect growth due to changes in melt composition, oxygen fugacity, temperature, rare earth element and high field strength element contents. Concentric fine-scale oscillatory zoning and major discontinuities are related to the variation in titanite stability and favoured by mixing processes that include complete mixing of crystal-free melts, crystal transfer between partially crystallized magma and late-stage diffusive exchange within the magma chamber.

Titanite occurs as rims around titanomagnetite grains which are clearly observed in photomicrographs obtained from DG (Figure 5a); whereas BSE images of the same titanite rims show relatively weak textural contrast with titanomagnetite grain (Figure 5b). In DG, a large phenocryst of hornblende contains inclusions of titanomagnetite, which are surrounded by titanite rims (Figure 5c). These titanite rims are most probably of secondary or hydrothermal origin. In MG, hydrothermal titanites occur as reaction rims as well as reaction products along conspicuous fracture zones in titanomagnetite grains as observed in the BSE image (Figure 5d). The microtexture and morphology of titanite suggest presence of more than one generation of titanite in both MG and DG. Both magmatic and hydrothermal titanites occur in samples #56 and #714 with relatively less abundance of hydrothermal titanite in samples #01/2–12 from MG.

Apatite grains occur as euhedral, equant to sub-equant, oval or prismatic shaped crystals (Figure 2c) and sometimes found along intergranular spaces between other minerals (Figure 4b). Such apatites are of magmatic origin. They occur mainly in acicular habit and are found as inclusions in biotite (Figure 2c, d), occasionally in plagioclase and hornblende.

Mineral chemistry

Mineral chemical studies of accessory minerals such as titanite, titanomagnetite and apatite were carried out on selected samples from Palaeoproterozoic granitoids to understand the magmatic and hydrothermal processes. These accessory mineral assemblages preserve the crystallization history of igneous rocks and initial records of magma chamber processes. Magmatic titanite is a common accessory mineral in granitoid rocks displaying compositional variability because of coupled substitution between Al and F for Ti and O in their respective crystal sites. It is associated with biotites and amphiboles in MG and DG. The magmatic titanite shows significant variation in its major element oxide composition (Supplementary Tables 1 and 2).

In both MG and DG, hydrothermal titanite mostly occurs as inclusions in biotite as well as in hornblende and also in the form of reaction rims around titanomagnetite. It occurs in higher modal abundance along with chloritized biotites in MG as compared to DG. Major element oxides composition of hydrothermal titanites in MG (Supplementary Table 3) and in DG mostly occurs as inclusions in hornblende (Supplementary Table 4) content or not detectable.

Overall, the major element mineral chemistry of two types of titanites in MG is more or less similar with some minor differences. Thus, it is difficult to distinguish between magmatic and hydrothermal titanite based on their major element oxide composition in MG because of extensive deuteric alterations and hydrothermal activities. This is because coupled substitution of Al and F for Ti and O in titanite resets their composition during late stage hydrothermal activities. However in the case of DG, there are significant differences between magmatic and hydrothermal titanites such as low TiO₂ and CaO with high Al₂O₃ and FeO + MgO. This discrimination is caused because of weak hydrothermal event or activities and restriction to local scale.

The iron-titanium oxides commonly found in igneous rocks and forming three fundamental solid-solution series in FeO, Fe₂O₃, and TiO₂ system are magnetite–ulvospinel
Figure 4. BSE images of magmatic titanite from the Malanjkhand granitoid: a, Equant grain with Sector zoning; b, Sub-equant grain with inclusions of apatite; c, d, Biotite host grain in association with titanite and apatite. Mineral abbreviations are according to Whitney and Evans.

Figure 5. Photomicrographs of hydrothermal titanites from the DG. a, Reaction rims of titanite on ilmenite–magnetite composite grains within hornblende phenocrysts and corresponding BSE shown in (b) with zircon and apatite as inclusion in hornblende dotted line indicates marked the reaction rim. c, BSE images show reaction rim of hydrothermal titanite around titanomagnetite grain hosted in hornblende. d, Inclusions of hydrothermal titanite along with ilmenite–magnetite grains. Mineral abbreviations are according to Whitney and Evans.
series (titanomagnetite), hematite–ilmenite series (titanohematite) and pseudobrookite–ferrobrookite series. Hydrothermal titanite occurring as reaction rims around titanomagnetite within amphibole phenocrysts is one of the most common features in DG (Figure 3 c–f) whereas in the case of MG, it occurs as inclusions within biotites (Figure 2 a, b) and sometimes in amphiboles. Mineral analysis of composite grains of ilmenite and magnetite in DG using EMPA reveals that these two occur as separate phases whereas their grain boundaries are difficult to distinguish in photomicrographs (Figure 3 c–f) and BSE images (Figure 5 a–d). The FeO\textsubscript{tot} and TiO\textsubscript{2} composition in ilmenites from DG ranges from 40.76 to 43.04 wt% and 52.27 to 53.32 wt% respectively (Supplementary Table 5). Significant variation observed in ilmenite composition is perhaps due to relative enrichment in TiO\textsubscript{2} from its ideal value (Figure 7). Magnetite composition is restricted to average FeO\textsubscript{tot} content of 88.81 wt% (Supplementary Table 6). Mineralogical studies inferred that titanomagnetite is more oxidized and its composition is closer towards titanomaghemite line (Figure 7) because of hydrothermal alteration processes. Amphiboles occur as stout large grains in both MG and DG plutons.Titanite, apatite, zircon and titanomagnetite are frequently observed as inclusions in amphibole grains. Some of these amphiboles are chloritized (Figure 3 c, d) due to hydrothermal alteration processes. Major element oxide compositions of amphiboles are presented in Supplementary Table 7 for both Paleoproterozoic granitoids (MG and DG). The structural formula is calculated based on 23 oxygen atoms per formula unit using NEWAMPHCAL program. Most of the amphibole compositions are restricted between two end member series, pargasite–hornblende and edendite–hornblende. Martin suggested that amphiboles crystallized from parent melts are restite free, whereas high X\textsubscript{Mg} indicates crustal contamination during crystallization. Amphiboles from MG are free from restite and there is no significant variation in composition, i.e. AlIV varies from 0.91 to 1.0 and X\textsubscript{Mg} varies from 0.55 to 0.68, which indicates its crystallization from parent melts. However, amphiboles from DG have more variable composition, i.e. AlIV and X\textsubscript{Mg} range from 1.06 to 1.83 and 0.10 to 0.13 respectively, and occasionally contain restite (Figure 3 c). Higher X\textsubscript{Mg} in amphiboles indicates higher degree of crustal contamination in parental magma during crystallization in MG compared to DG. Zoning in magmatic titanite and apatite also provide adequate evidences of crustal contamination due to mixing of mafic magma in the Palaeoproterozoic granitoids. Biotites are more abundant in MG as compared to DG, containing inclusions of magmatic (Figure 2 b) and hydrothermal titanites (Figure 3 b) as well as apatites (Figure 4 c, d). Occasionally, zircon also occurs as inclusions in biotite in both Palaeoproterozoic granitoids. Biotites from MG is Mg rich (MgO = 2.55–14.78 wt%) and Fe poor (FeO\textsubscript{tot} = 17.54–20.29 wt%); vice versa DG is Mg poor (MgO = 3.91–5.45 wt%) and Fe rich (FeO\textsubscript{tot} = 25.78–29.26 wt%). A temperature range of 547–602°C for MG and 487–562°C for DG (Supplementary Table 8) is estimated using Ti in biotite geothermometry, which indicates re-equilibration of biotite during alteration processes in both the granitoids. Sample #41, point #15 from MG provides slightly low temperature estimates possibly due to remobilization of excess Ti from biotite during hydrothermal alterations. It is inferred that Ti-substitution in biotite is a function of Mg content and temperature and indicates local departure from equilibrium due to hydrothermal alteration to form chlorite.

Apatites are valuable petrogenetic indicators showing volatile behaviour in mafic as well as felsic igneous rocks. Composition of apatites can be linked with the fugacities of F\textsubscript{2}, OH− and Cl–complexes through exchange equilibria. Mineral composition of apatites from DG and Mg is completely different in terms of CaO and P\textsubscript{2}O\textsubscript{5} content (Supplementary Table 9). Apatites in MG show low Ca and high F content in compared to apatites from DG. Variation in the concentration of halogens (F and Cl) in apatites from MG (F = 3.67–6.38 wt% and Cl <0.12 wt%) and DG (F = 1.51–1.86 wt% and Cl <0.02 wt%) is responsible for changes in their fugacity ratios during the crystallization of intrusive granitoids. In MG apatites contain La\textsubscript{2}O\textsubscript{3} up to 0.31 wt% and Ce\textsubscript{2}O\textsubscript{3} up to 0.92 wt%, whereas in DG, rare earth content in apatite is comparatively lower with La\textsubscript{2}O\textsubscript{3} ranging from 0.02 to 0.20 wt%, Ce\textsubscript{2}O\textsubscript{3} and Nd\textsubscript{2}O\textsubscript{3} ranging from 0.20 to 0.50 wt% and 0.18 to 0.34 wt% respectively (Supplementary Table 9).

Estimated crystallization temperature fromapatite-biotite geothermometry for MG ranges from 920°C to 1005°C, whereas most of the biotite in DG have higher value of IV(F) >3.0; thus such compositions are not useful in thermometric calculations. Only in one case (Slide #D175 Point #113), the IV(F) value is 2.482 corresponding to 927°C asapatite crystallization temperature in DG. The apatite–biotite equilibria provide the temperature of partial melting of crustal protoliths at near-liquidus that corresponds to fugacity ratio log(f\textsubscript{FIC}f\textsubscript{H2O}). 3.0–4.0 for MG and >4.0 for DG. It indicates that apatites crystallized from granitic melt, which was produced from partial melting of crustal protolith. Apatites saturated in granitic melt at very low concentrations of P\textsubscript{2}O\textsubscript{5} (ref. 67) and therefore are able to concentrate geochemically important rare earth elements. Apatites in MG are strongly zoned and have uniform composition as seen in the BSE images. Oscillatory zones in apatites reflect multigeneration growth during progressive crystallization within magma chamber.

Petrogenetic processes and accessory minerals

The accessory mineral assemblages are sensitive to a range of important parameters such as temperature, oxygen...
fugacity, melt composition and dissolution history of evolving magma70–72. There are clear correlations among accessory mineral occurrences and their textures that indicate variations in physicochemical conditions, which are very useful in constraining igneous processes within the magma chamber. Compositional variability in accessory minerals from the Palaeoproterozoic granitoids in central India bear consequences of variation in melt composition as well as physicochemical condition during late stage hydrothermal processes.

Magmatic titanite

Magmatic titanite is a product of late-stage oxidation during crystallization of granitoid pluton3. Constraints from titanite-forming reactions are good indicators of changes in pressure, temperature and oxygen fugacity of granitic magma71. Titanite composition depends on the fugacities of oxygen and fluorine. There are a number of mineral phases occurring as inclusions in titanite and genetically, these can be identified as of magmatic and hydrothermal origin. Primary mineral inclusions of apatite, zircon and titanomagnetite occur in titanite crystals in MG and DG. Magmatic titanite most likely formed because of hydration breakdown processes can be explained by the reaction model of Broska et al.13 involving amphibole, K-feldspar, biotite and titanomagnetite as follows

\[
7\text{Tr} + 2\text{Kfs} + 3\text{Titanomagnetite} + 3\text{H}_2\text{O} = 3\text{Ttn} + 2\text{Phl} + \text{Qz},
\]

where Tr is tremolite; Kfs, K-feldspar; Ttn, titanite; Phl, phlogopite and Qz, quartz.

Ti-bearing biotite in MG and Ti-enriched magnetite or ilmenite–magnetite composite grains are common in samples collected from DG and both serve as a source of Ti for the formation of titanite. Possibly, there was increase in oxygen and water fugacity that favoured hornblende hydration in granitic magma producing magmatic titanite in both the granitoids.

Hydrothermal titanite

Hydrothermal titanite in samples from MG occurs as fine-grained aggregates (~50–100 μm size) replacing magmatic biotite and appears to be coeval with chlorite formation (Figure 2a). It also occurs as small euhedral aggregates in biotite gains (Figure 2b) and is associated with plagioclase and K-feldspar. The equilibrium reaction proposed by Broska et al.13 for the formation of hydrothermal titanite explains its presence in MG, which is as follows

\[
\text{Ti-bearing Ann} + \text{An} = \text{Ttn} + \text{Ep} + \text{Chl} + \text{Qz},
\]

where Ann is annite; An, anorthite; Ep, epidote and Chl, chlorite.

Formation of hydrothermal titanite, especially in case of titanite rims around titanomagnetite in DG, is most likely due to hydration reactions involving amphibole, plagioclase, chlorite and magnetite. The hydration reaction is stabilized in DG at high oxygen (\(f_{O_2} \)) and water (\(f_{H_2O} \)) fugacity due to late stage hydrothermal activities with internal evolution of the exolved fluid33. It can be explained by the following equilibrium reaction

\[
6\text{Fprg} + 12\text{Ilm} + 4\text{O}_2 + 6\text{H}_2\text{O} = 12\text{Ttn} + 6\text{Ab} + 3\text{Fe-Ame} + 8\text{Mag},
\]

where Fprg is ferropargasite; Ilm, ilmenite; Ab, albite; Ame, amesite and Mag, magnetite.

Ilmenite–magnetite equilibria

Ilmenite and magnetite occur together as composite grains within hornblende in DG. Ilmenite–magnetite composite grains are formed due to subsequent unmixing via oxidation of the ulvospinel (Usp)61. This can be expressed by the following equilibrium reaction

\[
6\text{Usp} = 6\text{Ilm} + 2\text{Mag} + \text{O}_2.
\]

This reaction suggests that in DG, Fe–Ti oxides reequilibrate at subsolidus conditions; however, ilmenite and magnetite may or may not change in their composition during cooling of granitic magma. The titanite + magnetite + quartz assemblage in DG is helpful in temperature-oxygen fugacity estimation for granitic magma71. The estimated values of oxygen fugacity in DG are very close to FMQ buffer (Figure 6).

Amphibole geobarometry

Presence of amphiboles in granitoids is critical for deciphering the crystallization pressure and emplacement depths of granitic magma. Amphibole classification based on Si content and Mg/(Mg + Fe3+) reveals intermediate composition between ferrotschermakite–ferrohornblende40 and the classification scheme based on (Al3+ + Fe3+ + Ti) and AlVI content72 show compositional trends towards pargasite–endellite in MG and DG. The Al content in hornblende geobarometer proposed by Schmidt73 is used to estimate the pressure during crystallization of granitic pluton. The estimated pressure ranges from 2.07 to 3.58 kb for MG and 4.59 to 8.52 kb for DG, which is consistent with the previous study10. Calculation using Al-in-hornblende geobarometry reveals that MG is emplaced at the upper portion (~8 km depth) and DG at a relatively deeper portion (~20 km depth) of the continental crust.
Ti-in-biotite geothermometry

Biotites and co-existing mineral grains are important for textural equilibrium but may not necessarily imply attained equilibrium composition\(^{64}\). However, it is assumed that biotite composition attains chemical equilibrium with coexisting phases involving exchange and substitution of elements\(^ {65}\). In MG and DG, biotites co-exist with apatites and are mostly of magmatic origin, occurring with minerals like quartz, K-feldspar and titanite. This assemblage is sensitive for application of Ti-in-biotite geothermometry. Calculation indicates that biotites are re-equilibrated with associated mineral assemblages within the temperature range of 490–600°C in the Palaeoproterozoic granitoids of central India.

Apatite–biotite equilibria

Apatite is a minor but ubiquitous mineral in granitoids because of its low solubility in silicate melts and limited ability of common rock-forming minerals to accept phosphorus in their structure from granitic magma\(^ {10}\). It can also accommodate significant amounts of halogen and rare earth elements\(^ {10}\) apart from its importance as a P repository. Halogen (F and Cl) content in apatites can be interpreted as dissolved halogens in the granitic melts and coexisting biotite phases permit F–Cl–OH partitioning because of reciprocal mixing properties\(^ {75}\). Biotite–apatite thermometer grid corroborates with near-liquidus to near-solidus condition ranging from 900°C to 1000°C as well as increased fugacity ratio $ \log(f_{\text{H}_2O}/f_{\text{H}_2}) $ in crustal melt during crystallization of MG and DG. Apatites with high La, Ce and Nd content in these two granitoids indicate that they control a major portion of REE budget during crystallization of magma. In MG, texturally identifiable core in apatite is an evidence of partial dissolution dominated by magma mixing at the early stage of progressive crystallization. The temperature range of 900 to 1000°C estimated from apatite–biotite equilibria and pressure obtained from amphibole geobarometry (2.0 to 3.5 kb for MG and 4.5 to 8.5 kb for DG) is inferred to be the most probable P–T conditions for magma mixing processes that take place in the Palaeoproterozoic granitoids. Uniform composition along apatite zones indicates that later growth occurred in a relatively static environment with homogeneous melt composition\(^ {69}\).

Accessory mineral saturation

Most commonly occurring accessory phases like apatites, zircons and titanites in granitic magmas seem to be rich in P, Zr and Ti respectively, which behave as incompatible elements in the host rock\(^ {4.5,10}\). The behaviour of P, Zr, Ti and rare-earth elements (REE) controls the equilibria between accessory minerals and granitic magma during crustal melting\(^ {4}\). A good understanding of factors controlling accessory mineral crystallization is a fundamental issue in granite petrogenesis\(^ {76}\). Solubility of accessory minerals is useful for estimation of their saturation temperature in granitic magma.

Apatite saturation

Apatite solubility is useful in understanding the P-budget in granitic magma and estimating saturation temperature. P-content in granitic magma is an accurate measure of temperature of apatite crystallization\(^ {4}\). Temperature calculations were made using the apatite solubility models proposed by Harrison and Watson\(^ {4}\). For MG, the available bulk-rock geochemical data\(^ {40,41,77,78}\) is used to estimate the apatite saturation temperature of 806–980°C for rock composition with SiO\(_2\) = 60.07–76.74 wt% and P\(_2\)O\(_5\) = 0.02–0.32 wt% (Supplementary Table 10). For DG, the bulk-rock geochemical data\(^ {40,41,77,78}\) is used to calculate the apatite saturation temperature range of 753–941°C for rock composition with SiO\(_2\) = 66.19–72.73 wt% and P\(_2\)O\(_5\) = 0.01–0.13 wt% (Supplementary Table 10). Temperature calculation shows that the beginning and end of crystallization of apatites is at relatively higher temperature in MG (~980°C) along with significant variation in SiO\(_2\) as compared to DG (~940°C) (Figure 7a).
Zircon saturation

Experimental studies demonstrate that low solubility of zircon in crustal melts helps to constrain the temperature at which it is crystallized and the amount of Zr required to achieve the completely saturated condition of the granitic magma3,59. Zircon solubility depends on the temperature and composition of granitic magma59, which is widely used to estimate the zircon saturation temperature. Zircon saturation thermometer is highly accurate for practical applications because of limited analytical errors in Zr, major-element composition and presence of zircon inheritance5. Zircon thermometry yields a temperature range of 703–919°C for MG and 834–987°C for DG40, which corresponds to Zr concentrations ranging from 25 to 291 ppm and 93 to 494 ppm respectively (taken from earlier studies for MG40,41,77,78 and DG40,42). Temperature estimation shows that crystallization of zircon started at relatively lower temperature in MG (~919°C) as compared to DG (~987°C), which continued for a wide temperature range and finally ended at a further lower temperature (Figure 7 b).

Titanite saturation

Experimental studies suggest that Ti-solubility in melts decreases as melts become more felsic and strongly depends on temperature and melt composition81,82. Ti saturation in magma with high Ca-activities preclude the formation of titanite because of calcic composition and its stability is strongly controlled by the conditions of crystallization and bulk composition78. Titanites occur as the principal Ti-rich phase in MG and DG indicating that the magma was saturated with TiO₂. Thus, Ti solubility model83 is useful for estimation of the Ti saturation temperature. Temperature calculation indicates that granitic magma was saturated with Ti in the temperature range of 642–852°C for MG and 645–790°C for DG40 corresponding to Ti concentration ranging from 143 to 1760 ppm and 150 to 918 ppm, respectively (taken from earlier studies for MG40,41,77,78 and DG40,42). Estimated Ti saturation temperature indicates that Ti-rich phases started crystallizing at slightly higher temperature in MG (~852°C) as compared to DG (~790°C) and ended at similar temperature conditions (~640°C) (Figure 7 c).

Temperature estimates from accessory mineral saturation models reveal the sequence of crystallization of apatite, zircon and titanite in the Palaeoproterozoic granitoids in central India. In MG, apatite is the earliest phase that started crystallizing at ~980°C followed by zircon (~919°C) and titanite (~852°C). In DG, probably zircon is the earliest phase crystallizing at ~987°C followed by apatite (~941°C) and titanite (~790°C). According to Ryerson andWatons81, Ti-solubility in magma is inversely dependent on silica content; in other words, Ti-saturation temperature is relatively lower in more felsic magma. In granitic magma, Ti-solubility is most likely thought to reflect a lack of equilibrium with coexisting phases83 such as apatite and zircon, which are most likely to be saturated in the early stage of crystallization. Thus, Ti-saturation temperature is relatively lower than that of apatite and zircon saturation temperatures, particularly in case of DG. Pandit and Panigrah40 suggested that hornblende-plagioclase crystallized in the temperature range 743–773°C for MG and 725–773°C for DG, which is broadly overlapped by the temperature of titanite formation (MG: 642–852°C and DG: 645–790°C).

However, there are occurrences of Dongargarh equivalent granitoid plutons even much larger in size in Dhano–Mainpur33 towards south, Madanbera towards west, Kanker–Mainpur towards southeast83 and other occurrences are located in the adjacent areas of Bastar, Sukma, Sitagaon, Keskal, Darbha, etc. These granitoids are compositionally more varied (granite–granodiorite–monzonite) compared to DG83. Thus, the origin of Palaeoproterozoic granitoids and felsic magmatism in central India remains rather obscure and needs further attention.

Discussion

Two distinct intrusive Paleoproterozoic granitoid plutons in central India show evidences of evolving granitic magmatism in a continental rift or extensional or divergent tectonic setting40. At the early stage of crystallization, the magma eventually becomes saturated with P and Ti, thus crystallizing apatite and titanite as accessory phases4. Early progressive crystallization of Palaeoproterozoic granitoids was dominated by magma mixing and partial dissolution processes with the formation of apatite between near-liquidus to near-solidus temperature (900–1000°C) and increased fugacity ratio log(fH₂O/fH₂) followed by a relatively static environment in the magma chamber. Apatites are enriched in common LREE (i.e. La, Ce, Nd) and controlled its budget in the magma during crystallization. Higher halogen content in apatite from MG (F = 3.67–6.38 wt% and Cl <0.12 wt%) compared to DG (F = 1.51–1.86 wt% and Cl <0.02 wt%) indicates that parental granitic magma of MG was comparatively richer in F and Cl content. Abundance of F and Cl in granitic magma may play a potential role as ligands in metal transport84,85 and in formation of magmatic–hydrothermal ore deposits86. Biotite–apatite thermometer grid infers that both granitoids are produced from partial wet melting of crustal protolith.

Two varieties of titanite (magmatic and hydrothermal type) crystallized in the Palaeoproterozoic granitoids because of two distinct geological processes, i.e. magmatic and hydrothermal alteration. There are two possibilities of formation of magmatic titanite, either because of hydration reaction that breaks down amphibole to biotite
Figure 7. Granite composition (SiO$_2$ wt%) versus estimated temperature for (a) apatite, (b) zircon and (c) Ti-saturation in the parental magma for Malanjkhand and Dongargarh granitoids (Supplementary Table 10).

with a rise in fO$_2$ and fH$_2$O conditions during crystallization of granitic magma or direct crystallization from Ti-saturated granitic melt with high Ca-activities. Presence of oscillatory zoning in magmatic titanite indicates cyclic change in the composition of Ti-saturated granitic magma with crystallization under oxidizing conditions. In DG, titanomagnetite occurs as composite grains (ilmenite and magnetite) in amphiboles and is enclosed by titanite rims with variable width. Possibly, they were re-equilibrated at subsolidus stage at high fO$_2$ conditions close to FMQ buffer, which indicates an oxidized continental crust during the growth of titanite rims around titanomagnetite grains. In MG, hydrothermal titanite formed due to deuteric alteration of Ti-bearing biotite to chlorite, whereas in DG alteration of amphibole to chlorite occurred in presence of titanomagnetite. Formation of hydrothermal titanites and alteration of biotite and amphibole due to hydration reaction suggest high fO$_2$ and fH$_2$O resulted from late stage hydrothermal activities in the continental crust.

Ti-in-biotite geothermometer infers that biotite attained chemical re-equilibrium during cooling in a temperature range of 490–600°C along with other mineral assemblages, responsible for Ti-substitution. Al-in-hornblende geobarometer estimation indicates that Palaeoproterozoic granitoids in central India emplaced at a pressure of 2–3.5 kb for MG, which is relatively higher for DG than (4.6 to 8.5 kb) corresponding to the middle–upper levels in the continental crust. This result is corroborated with the earlier study by Pandit and Panigrahi.

Calculations from the accessory mineral saturation temperature infer two different crystallization sequences of granitic magma for MG and DG. Crystallization sequence of accessory mineral in MG is: apatite \rightarrow zircon \rightarrow titanite, whereas that in DG is: zircon \rightarrow apatite \rightarrow titanite. Crystallization temperature of titanite
overlaps with the temperature of hornblende-plagioclase formation. Thus, apatite and zircon crystallized earlier than hornblende–plagioclase in the granitic magma forming the two most prominent units of Palaeoproterozoic granitoids in central India.

RESEARCH ARTICLES

RESEARCH ARTICLES

ACKNOWLEDGEMENTS. I acknowledge the Council of Scientific and Industrial Research (CSIR) and Science and Engineering Research Board, Department of Science and Technology (SERB-DST), Government of India for supporting research funding. I thank Prof. M. K. Panigrahi, IIT Kharagpur; Sandeep Nandi, EPMA Laboratory, Geological Survey of India, Kolkata and Dr Takeru Mori Yamada, National Institute of Advanced Industrial Science and Technology (AIST), Geological Survey of Japan for facilitating Electron Probe Micro Analyzer for mineralogical studies and for consistent scientific and technical support in the study. I also thank Prof. N. V. Chalapathi Rao for editorial support along with two anonymous referees for their insightful comments and constructive suggestions, which helped improve the scientific quality of the research article.

Received 13 May 2017; revised accepted 26 December 2017
doi: 10.18520/cs/v114/i11/2329-2342