Wide applicability is restricted by the significant variation in depth of investigation and secondary field strength in this system over the existing conventional systems. The new configuration compared to the existing systems. In terms of secondary field strength, the anomaly reflects the magnetic permeability/susceptibility difference of the subsurface medium on either side of the receiver. The study concludes that there is significant increase in depth of investigation and secondary field strength in this system over the existing conventional frequency domain systems and also more robust for boundary detection.

Keywords: Conducting bodies, electromagnetic system, magnetic permeability, physical model studies, susceptibility.

Electromagnetic (EM) methods are popular for a wide variety of applications in exploring the internal structure of objects by transmitting the primary electromagnetic field and analysing the induced secondary field intensities. Similar mechanism is involved in the geophysical electromagnetic exploration for measuring conductivity/susceptibility of the subsurface formations to map the mineral/ore deposits. Geometrical electromagnetic sounding is a popular technique, in which the separation between the transmitter and receiver coils is increased to achieve deeper penetration. The skin depth is the most important and interesting phenomenon that restricts the penetration of the fixed frequency electromagnetic energy up to a constant depth for a fixed transmitter (Tx) and receiver (Rx) separation within a subsurface layer with specific electrical conductivity. Most of the frequency domain electromagnetic systems utilize the concept of skin depth to scan the subsurface by decreasing the frequency of the primary field. Such frequency sounding is the most popular method since the past five decades in geophysical electromagnetic exploration. These systems are handy in near subsurface study, such as groundwater exploration in hard-rock terrains, soil pollution study, mineral exploration, etc.

Different techniques and coil configurations have been developed to nullify the influence of strong primary field on the receiver in frequency domain EM exploration. Recently, researchers have designed the vertical primary decoupled coil configuration (VPDc) to nullify the effect of primary field on the receiver. They have suggested placing the receiver coil at a strategic position where the primary magnetic field horizontal component is zero. The performance and stability of VPDc have been tested and found efficient among the existing conventional coil configurations using laboratory studies. However, the complicated non-coplanar and non-coaxial geometrical set-up of the transmitter and receiver coils in the VPDc reduces its wider applicability.
In this communication, we present a new frequency domain electromagnetic system known as ‘dual transmitter receiver electromagnetic (DuTrEM)’ system. We discuss the working principle and its theoretical background. Then we provide the results on testing of the DuTrEM system over conducting targets of different geometries using a laboratory model in comparison with VPDCc.

The DuTrEM system employs two transmitters and one receiver with vertical co-axial configuration. The problems with the VPDCc geometry are circumvent with the new configuration in which three coils are engaged co-axially. The centre coil works as the receiver and the two other are the transmitters placed at equal distances on either side of the receiver. The two transmitters produce electromagnetic dipole fields with opposite directions to generate a magnetic cavity plane between them by sending current in opposite directions. It is known from the basic properties of magnetism that the like poles repel each other. Therefore, generation of the magnetic null plane could be possible if the two coils produce opposite magnetic fields. The repulsion between magnetic field lines of force allows deep penetration of the field to incorporate more depth of investigation. The null plane will be at the geometric centre if both the two transmitter coils possess the same parameters (number of turns, radius, thickness and the current sent). Figure 1a shows a schematic diagram of the proposed configuration. The receiver coil is placed coaxially in this magnetic null plane to pick up only the secondary induced anomaly field arising due to the difference in the electromagnetic properties (conductivity, magnetic permeability and electrical permittivity) of the subsurface on either side of the receiver. Figure 1b shows the magnetic field distribution pattern of the DuTrEM system.

The equation for resultant magnetic field at the receiver due to the two transmitters is simply the vector sum of two magnetic fields from the transmitters. The induced voltage in the receiver coil is proportional to time-varying magnetic field at the receiver. The equation for the magnetic field at the receiver coil in terms of magnetic permeability/susceptibility can be obtained as follows.

Let us suppose that the system is placed on the surface and imagine that the boundary between the formations falls exactly beneath the receiver, as shown in Figure 2. Now, the voltage induced in the receiver is due to the resultant induced magnetic field from the two transmitters at the receiver. The magnetic field at the receiver due to the first transmitter (Tx1) is given by (assuming that the coils contain only one turn).

\[
B_1 = \frac{\mu_1 2\pi a^2}{4\pi(l^2 + a^2)^{3/2}} I.
\]
(1)

Similarly, the magnetic field at the receiver due to the second transmitter (Tx2) is

\[
B_2 = \frac{\mu_2 2\pi a^2}{4\pi(l^2 + a^2)^{3/2}} I.
\]
(2)

So, the net magnetic flux through the receiver is

\[
\Delta B = \frac{(\mu_1 - \mu_2) \cdot 2\pi a^2}{4\pi(l^2 + a^2)^{3/2}} I.
\]
(3)

or

\[
\Delta B = \frac{(\chi_1 - \chi_2) \cdot 2\pi a^2}{4\pi(l^2 + a^2)^{3/2}} I.
\]
(4)

Here \(\mu_1\) and \(\mu_2\) denote the magnetic permeability of the homogenous medium and formation ‘A’, and \(\chi_1\) and \(\chi_2\) denote the magnetic susceptibilities of the homogenous
medium and formation ‘A’ respectively (Figure 2). \(a \) is
the radius of the transmitter and receiver coils and \(l \) is the
separation between the transmitter and receiver coils.

The difference in the magnetic properties of the
medium produces an induced residual time-varying mag-
netic field following eqs (3) and (4). The receiver coil
converts the residual induced magnetic field to voltage
and will be measured using an appropriate device. This
voltage is therefore a measure of the induced electromag-
netic field difference from the subsurface material on
either side of the receivers.

Figure 3 shows the DuTrEM system set-up in the
laboratory to conduct scale model studies over targets
with different transition parameters. In the present study,
copper wire of 1 mm gauge is used for winding the coils
(transmitter as well as receiver). Each coil contains 150
turns with an average radius of 2.5 cm. We have utilized
basic operational amplifier UA741 in the receiver
amplifier and modified TDA2030 dual-channel audio
power amplifier as transmitter. The system is driven by
18 W power amplifier in the frequency range 10–
100 kHz. An amplifier with gain-2 has been employed in
the receiver circuit. As the anomaly is normalized, the
gain of the receiver amplifier will not affect data analysis
and interpretation. In the ideal case, the receiver output
voltage of the system over homogeneous medium will be
zero. However, due to practical limitations in maintaining
equal separation between the receiver and transmitter
coils at micro level to achieve exact magnetic null plane,
we consider 10–20 mV as zero receiver anomalies. The
system calibration/null-field adjustment can be done as
follows.

The receiver coil will be fixed at the centre and the
transmitters on either side are flexible to move along the
axis. The system has to be calibrated at the particular
frequency of interest within a reference medium by slightly adjusting the separation between the receiver and
one transmitter while keeping the other transmitter at a
particular distance, until the receiver voltage between
\(\sim 0 \) and 20 mV is achieved. This is called ‘magnetic null
set-up’ or simply ‘null set-up’. Once the system is cali-
brated for null set-up, we can proceed to acquire the data.
If one wants to go for a wide range of frequency, it is
suggested to calibrate the system for each frequency
separately.

Profiling data over a vertical graphite sheet of thick-
ness 5 mm, length 750 mm and breadth 400 mm are
obtained using both VPDC and DuTrEM configurations
for different target depths (\(d \)) in a model tank made up of
non-conductive material within the host medium of free
space using \(T x_1 – Rx – T x_2 \) separation of 5 cm. The target is
kept at a horizontal distance 40 cm from the starting point
of the profile (i.e. 0 cm in Figures 4 and 5). Figures 4 and
5 show the percentage of anomaly calculated for the ver-
tical graphite sheet at different depths using both the sys-
tems. As VPDCc was proven as a more efficient system
over conventional horizontal co-planar (HCP) configur a-
tion, we have compared the DuTrEM configuration with

Figure 4. Percentage of anomaly observed over a vertical graphite sheet (\(l = 750 \) mm, \(b = 400 \) mm, \(t = 5 \) mm, \(f = 60 \) kHz, \(T x – R x \) separa-
tion \(L = 50 \) mm) using DuTrEM configuration. Target is placed at a
horizontal distance of 40 cm.

Figure 5. Percentage of anomaly observed over a vertical graphite sheet (\(l = 750 \) mm, \(b = 400 \) mm, \(t = 5 \) mm, \(f = 60 \) kHz, \(T x – R x \) separa-
tion \(L = 100 \) mm) using vertical primary decoupled coil configuration.
Target is placed at a horizontal distance 40 cm.
Table 1. Comparison of percentage of anomaly over a vertical graphite sheet \((l = 750 \text{ mm}, h = 400 \text{ mm}, t = 5 \text{ mm})\) using vertical primary decoupled coil configuration and dual transmitter–receiver electromagnetic configurations

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Target depth ((h \text{ cm}))</th>
<th>Tx–Rx separation (L \text{ (cm)})</th>
<th>Frequency ((\text{kHz}))</th>
<th>(h/L) of anomaly</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPDCc</td>
<td>10.8</td>
<td>12</td>
<td>60</td>
<td>0.9</td>
</tr>
<tr>
<td>VPDCc</td>
<td>13.2</td>
<td>12</td>
<td>60</td>
<td>1.1</td>
</tr>
<tr>
<td>VPDCc</td>
<td>15.6</td>
<td>12</td>
<td>60</td>
<td>1.3</td>
</tr>
<tr>
<td>DuTrEM</td>
<td>5</td>
<td>5</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>DuTrEM</td>
<td>7.5</td>
<td>5</td>
<td>60</td>
<td>1.5</td>
</tr>
<tr>
<td>DuTrEM</td>
<td>10</td>
<td>5</td>
<td>60</td>
<td>2</td>
</tr>
</tbody>
</table>

can be observed that the strength of the anomaly with DuTrEM for the same \(h/L\) ratio is almost eight times higher than VPDCc. Figure 6 shows the profiles over a vertical graphite cylinder for different target depths. Our results indicate that the anomaly obtained over the graphite cylinder (65%) is almost double that over the vertical sheet (30%) for \(h/L\) ratio of 1.5. The high anomaly percentage justifies the larger volumetric contribution of the solid graphite cylinder compared to the thin vertical sheet.

Further, frequency response of the system has been studied to verify the frequency stability in laboratory scale. Figure 7 depicts the profiling anomalies over a vertical graphite cylinder of length 16 cm and diameter 15 cm at different depths using frequencies between 30 and 100 kHz with Tx–Rx separation of 5 cm. From the frequency response it is clear that the system can be operated in the frequency range 10–80 kHz to detect targets at depths up to 1.8 times to the Tx–Rx separation with conductivities less than or equal to that of graphite. With more accurate instrumentation amplifiers and power amplifiers, one can achieve better results using DuTrEM configuration.

Finally we have obtained profiles over a horizontal aluminium sheet \((l = 60 \text{ cm}, b = 25 \text{ cm}, t = 0.2 \text{ cm})\) along its breadth to verify the system applicability on other conducting materials as well as its efficacy in measuring the extension of the conducting body. Figure 8 depicts the anomaly curve for different depths (10, 15 and 20 cm) over the aluminium sheet using Tx–Rx separation of 7.5 cm. Even though the sheet is very thin, it is possible to detect the target up to a depth approximately equal to twice the Tx–Rx separation. The boundaries of the aluminium sheet are clearly identified by the peaks of the anomaly curve. The distance between the two peaks is 25 cm, which is exactly equal to the physical breadth of target. As the conductivity of aluminium is higher than that of graphite, the strength of the anomaly is high in case of thin aluminium sheets compared to graphite sheets. From the physical model studies it is observed that the new system provides more depth of investigation and accurate boundary detection compared to conventional systems. The improved depth of investigation is.

Figure 6. Percentage of anomaly obtained over a vertical graphite cylinder \((L = 150 \text{ mm}, r = 75 \text{ mm})\) for different target depths using Tx–Rx separation of 50 mm and frequency 50 kHz at different depths \((d = 75, 100 \text{ and } 125 \text{ mm})\). Target is placed at a horizontal distance of 55 cm.

Figure 7. Frequency response of DuTrEM over a graphite cylinder \((L = 150 \text{ mm}, r = 75 \text{ mm})\) for different target depths \((T_d = 7.5, 10 \text{ and } 15 \text{ cm})\) using Tx–Rx separation of 5 cm. Target is placed at a horizontal distance of 55 cm.

VPDCc to verify its efficacy in terms of percentage of anomaly for different target depths. Table 1 provides a comparison of the percentage of anomaly observed from both the systems for the same transition parameters. It
possible because of the repulsion between the magnetic lines of force. The depth of investigation is 1.8 times the Tx–Rx separation, and the strength of the anomaly is eight times more compared to the VPDCC system.

We have designed and developed a new frequency domain electromagnetic system for geophysical exploration of subsurface conductive bodies. The physical model laboratory studies over conducting bodies with different transition parameters show that this configuration is efficient compared to the conventional frequency domain systems. The system facilitates accurate boundary detection between geological formations with different electrical properties. The proposed system can be operated over a wide range of frequencies to scan the subsurface with high resolution. The main features of the system are as follows: (i) depth of investigation of the system is around ~1.8 times the transmitter–receiver separation and the strength of the anomaly is eight times more compared to the VPDCC system. (ii) As the receiver is placed in the magnetic null plane, the observed anomaly is directly proportional to the difference in the magnetic properties between the subsurface lateral extents and provides accurate boundary detection. (iii) The exact estimation of the target length/breadth is possible as the boundaries between the different formations are clearly indicated by peaks in the anomaly curve.

Figure 8. Percentage of anomaly observed over a thin horizontal aluminium sheet (l = 600 mm, b = 250 mm, t = 2 mm, f = 40 kHz and Tx–Rx separation L = 75 mm) for target depths d = 100, 150 and 200 mm.

Overestimated groundwater 14C ages triggered an inexpediency of water policy in China

Tao Wang1,2 and Jiansheng Chen1,*

1Geotechnical Research Institute, College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
2College of Hydrology and Water Sources, Hohai University, Nanjing 210098, China

Northern China has been facing a serious problem of groundwater scarcity. The government developed restrictive policies on groundwater extraction, and designed the South–North Water Transfer Project (SNWTP) to transfer water from the Yangtze River in southern China to the arid region in the north. However, contrary to expectation, groundwater levels in northern China have been rising significantly before completion of the project. Due to misapplication of the 14C dating method, the age of deep confined groundwater in arid northern China has been overestimated. This classifies the groundwater as palaeo-groundwater with little recharge, which results in the prohibition of groundwater extraction and SNWTP. Significant tritium concentrations recently reported in the so-called palaeo-groundwater, along with rising groundwater levels, imply recent groundwater recharge in arid northern China.

Keywords: Groundwater, 14C dating method, northern China, South–North Water Transfer Project.

The problem of groundwater scarcity in northern China is very severe than any other parts of the world$^{1–3}$. In the 1980s and 1990s, long-term over-exploitation of groundwater resulted in sustained lowering of groundwater

ACKNOWLEDGEMENTS. We thank the Director, CSIR-NGRI, Hyderabad for encouragement. R.R. thanks CSIR, New Delhi for funds.

Received 23 August 2017; revised accepted 13 November 2017

doi: 10.18520/cs/v114/i08/1747-1751

Overestimated groundwater 14C ages triggered an inexpediency of water policy in China

Tao Wang1,2 and Jiansheng Chen1,*

1Geotechnical Research Institute, College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
2College of Hydrology and Water Sources, Hohai University, Nanjing 210098, China

Northern China has been facing a serious problem of groundwater scarcity. The government developed restrictive policies on groundwater extraction, and designed the South–North Water Transfer Project (SNWTP) to transfer water from the Yangtze River in southern China to the arid region in the north. However, contrary to expectation, groundwater levels in northern China have been rising significantly before completion of the project. Due to misapplication of the 14C dating method, the age of deep confined groundwater in arid northern China has been overestimated. This classifies the groundwater as palaeo-groundwater with little recharge, which results in the prohibition of groundwater extraction and SNWTP. Significant tritium concentrations recently reported in the so-called palaeo-groundwater, along with rising groundwater levels, imply recent groundwater recharge in arid northern China.

Keywords: Groundwater, 14C dating method, northern China, South–North Water Transfer Project.

The problem of groundwater scarcity in northern China is very severe than any other parts of the world$^{1–3}$. In the 1980s and 1990s, long-term over-exploitation of groundwater resulted in sustained lowering of groundwater

*For correspondence. (e-mail: jschen@hhu.edu.cn)