Hepatomoencephalopathy in Malkangiri district of Odisha, India

During September through November 2016, some 100 children died due to acute brain disease in Malkangiri district, southern Odisha, India. Most deaths were at first attributed to Japanese encephalitis (JE) due to the following reasons: JE had been reported in Malkangiri district in previous years and diagnostic test for JE was positive in a few children in 2016; JE season is September through November; the vector mosquitoes and amplifying hosts, namely pigs, are prevalent in Malkangiri district. However, a number of cases turned out negative for JE test. Therefore, in the last week of October, the Department of Health, Government of Odisha, constituted a team to investigate the cases of non-JE acute brain disease with high mortality\(^1\).

We conducted a rapid review and investigations during the first two weeks of November. Two of us (G.A. and M.M.P.) had visited Malkangiri district during October when the clinical pattern of non-JE cases was found to be stereotyped: relatively abrupt onset and rapid deterioration during several hours with unconsciousness, muscle rigidity and generalized seizures. Cerebrospinal fluid (CSF) samples showed no increase in cell count. Death occurred within 2–4 days of onset of illness, and those who survived recovered completely with no neurological deficit. These clinical features are typical of acute encephalopathy and quite different from those of acute encephalitis\(^2\). One of us (G.A.) collected blood serum, CSF and urine samples from these non-JE cases and stored them frozen. They were useful for further investigations.

Spatial and temporal clustering of acute encephalopathy had been reported in recent years in several districts of western Uttar Pradesh (UP) and in Muzaffarpur district, Bihar\(^3\). In UP, the disease was hepatomyoencephalopathy and quite different from those of acute encephalitis\(^2\). One of us (G.A.) collected blood serum, CSF and urine samples from these non-JE cases and stored them frozen. They were useful for further investigations.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Range of enzyme levels (IU/l)</th>
<th>Normal range of enzyme levels (IU/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST</td>
<td>1068–15297 (4076)</td>
<td>10–40</td>
</tr>
<tr>
<td>ALT</td>
<td>1260–6957 (2806)</td>
<td>10–40</td>
</tr>
<tr>
<td>CPK-MB</td>
<td>706–10476 (2703)</td>
<td>0–24</td>
</tr>
<tr>
<td>LDH</td>
<td>1500–32472 (6447)</td>
<td>225–460</td>
</tr>
</tbody>
</table>

Values in parenthesis indicate mean of enzyme levels of 15 cases.

AST, Aspartate transaminase; ALT, Alanine transaminase; CPK, Creatine phosphokinase; LDH, lactate dehydrogenase.

![Figure 1. *Cassia occidentalis* plant in Malkangiri district, Odisha having pods containing seeds.](image)

![Figure 2. LC-MS of urine sample of a hepatomyoencephalopathy patient from Malkangiri district, Odisha.](image)
Solar-powered on-farm storage structure for fruits and vegetables

Preserving fruits and vegetables in cold storage has been a critical area of concern because at low temperature, these perishable commodities can be preserved in their wholesome state for longer periods. However, the absence of cold storage facilities to accommodate the ever-increasing supply of fruits and vegetables has compelled the producers to adopt alternative storage practices; practices that in effect would preferably be economical than renting space in cold store and more efficient than rustic storage producers. Fruits and vegetables are highly perishable, and if not properly handled at their optimum condition after harvesting or during packaging or transportation; they easily deteriorate and become unsuitable for consumption. The world over postharvest losses are estimated at an average of 30–40% in fruits and vegetables before they reach the final consumer. The postharvest losses of fruits and vegetables in India are about 30–35% (ref. 4).

Temperature and relative humidity are the two most important environmental factors influencing the quality and storage life of fresh produce. If the surrounding air temperature is decreased to create storage at optimum levels within 4 h, the following are achieved: decrease in produce respiration rate; reduction of water loss from produce; concealment of ethylene production and significant


ACKNOWLEDGEMENTS. We thank Ms Arti Ahuja (Principal Secretary, Department of Health, Government of Odisha) for authorizing us to conduct the investigation. Thanks are due to Dr S. P. Singh for LC–MS analysis.

Received 2 December 2016; accepted 1 December 2017

T. JACOB JOHN1
G. ARUNKUMAR2
MADAN M. PRADHAN3
MUKUL DAS4,*

1No. 439, Civil Supplies Godown Lane, Kamalakshipuram, Vellore 632 002, India
2Manipal Centre for Virus Research, Manipal University, Manipal 576 104, India
3National Vector Borne Disease Control Programme, Odisha, Behind Capital Hospital, Unit VI, Bhubaneswar 751 001, India
4CSIR-Indian Institute of Toxicology Research, 31 Vish Vigyan Bhawan, M. G. Marg, Lucknow 226 001, India
*For correspondence. e-mail: mditrc@rediffmail.com