A critical and comparative study of recently collected specimens (available at CSIR-NBRI Herbarium (LWG)) with type specimens and description revealed that thalli are less wide at apex in our specimens compared to type specimens, i.e. 6–11(13) mm wide at apex and smaller size of pseudocelators compared to type specimens (139–190 μm long), which may be due to changes in climatic and ecological conditions over a long period of time. *A. macrosoporos* resembles *A. punctatus* L., *A. pannel Udar & A. K. Asthana* and *A. erectus* Kashyap in some features, especially the morphoform of thalli, but can be clearly recognized by its characteristic sporoderm architecture. In *A. punctatus* sporoderm is reticulate, rather pitted; *A. pannel* is clearly distinctive in having smaller spores (39–45 μm) with verrucate to lamellate sculpturing, while *A. erectus* can be distinguished by reticulate sporoderm pattern with spino-late ridges enclosing irregularly shaped lumen.

Of the seven locations (five in Maharashtra and one each in Tamil Nadu and Gujarat) where *A. macrosoporos* has been located in the country so far, the species could never be collected again from its type locality at Boraghat in Maharashtra and Kodaiankan in Tamil Nadu. As such, the species is presently known from severely fragmented populations at only five inferred sites spread across Maharashtra and Gujarat with an ‘extent of occurrence’ of much less than 5000 km² and a highly restricted ‘area of occupancy’. Therefore, as per the IUCN Red List categories and criteria version 3.1 (ref. 6), *A. macrosoporos* belongs to endangered category [ENB1a + 2a; C2a(i)] at global level,

ACKNOWLEDGEMENTS. We thank the Director, CSIR-NBRI, Lucknow for encouragement and providing the necessary facilities. R.G. thanks DST (SERB) for providing funds under postdoctoral scheme (YSS). Work has been carried out under OLP-0083.

Received 26 May 2017; revised accepted 19 September 2017

A. K. ASTHANA1,2*
REESHA GUPTA3
VISHWA JYOTSNA SINGHG
V. K. HILE1
G. T. DABHADER

1Bryology Laboratory, CSIR-National Botanical Research Institute, Lucknow 226 001, India
2Department of Botany, Somani College, Mumbai 400 007, India
3Department of Botany, Birla College, Kalyan 421 304, India
*For correspondence, e-mail: drakasthana@rediffmail.com

Sodium bicarbonate aqueous matrix as novel industrial solvent for benzoylation of some Ar-OH, Ar-NH and R-HN functionalities

It is a well accepted fact that chemical transformations can occur in solid, liquid and gaseous matrix; however, liquid matrix (solvent) dominates due to certain distinct multi-dimensional advantages especially at molecular level, making it a versatile tool for industrial manufacturing processes1–4. It has been estimated that 28-million metric tonnes (MNT) of organic solvents are commercialized globally for different industrial purposes, majority of which get utilized in chemical and pharmaceutical manufacturing5. Recently, global regulatory pressure regarding toxicity of organic solvents on the living population6 and their not ecofriendly characteristic7, have raised significant concern worldwide to search for an alternatively less hazardous industrial solvent/s benign not only for the living population, but also environmentally compatible, chemically recyclable, and within the guideline of regulating authorities. ‘Solvent substitution’, is a newer philosophy currently adopted by most of the chemical manufacturing industries where manufacturing processes have now been shifted from conventional to less hazardous solvents without compromising on the final product both in terms of quality as well as quantity. Evaluation and in-process acceptance of newer solvent/s for classical manufacturing process is based on a thorough multidimensional assessment of the same by centralizing three main aspects: worker safety, process safety, and regulatory and environmental safety8–9.

Benzoylation10, a common substitution reaction involves introduction of ArCO functionality (Scheme 1) into an organic compound. The technique is considered to be an economic, efficient, and feasible methodology for protecting and identifying aliphatic as well as aromatic organic

\[
\text{Ar-X + ArCOCl} \xrightarrow{\text{NaOH (10%)}} \text{Ar-Y-COAr'} + \text{HCl}
\]

\[
\begin{align*}
\text{X-NH_2} & \quad \text{Stir 30–25 min} \quad \text{Y-NH} \\
\text{X-OH} & \quad \text{RT} \quad \text{Y-O}
\end{align*}
\]

Scheme 1. Generalized depiction of benzoylation in NaOH to yield amide/ester derivatives.
compounds including their synthetic transformation subsequently into amide (Ar’CONHAr’/R) or ester derivatives (Ar’CO-OAr’/R) in the presence of benzoylation agent in alkaline solvents (Schotten–Baumann reaction)11-15. Compared to acetylation (introduction of RCO-group) benzoylation is preferred due to superiority of benzoylated product/s, including their derivatives with respect to high melting point, aqueous insolubility, stability and resistance towards hydrolysis16-18.

Chemically, inorganic or organic bases such as sodium hydroxide or pyridine are used extensively as primary catalysts providing the necessary alkaline liquid matrix sufficient to support benzoylation. Mechanistically, the high pH matrix helps in absorbing protons evolved during substitution and thus directs the reaction forward along with enhancing the attacking power of the benzoylating agent. Whatever the alkaline matrix used for benzoylation is neither safe nor ecologically compatible and also difficult to recycle (Fischer scientific; mds; pyridine/sod hydroxide). On the other hand, when used for industrial purposes, they impose extensive financial burden in the manufacturing processes. However, the sodium bicarbonate matrix system being reported here is safe compared to classical alkaline solvents used industrially for benzoylation. In addition, we also tested one of our hypotheses – ‘iceberg dancing of molecules’ and found it to align with the results of this study.

The benzoylated derivatives were synthesized (under fuming hood) by dissolving or suspending equimolar quantity of reagents and benzoyl chloride (slightly more) in aqueous sodium bicarbonate matrix (10%; bicarbonate matrix satisfactorily participated in hydrolysis16-18).

The method can be used in laboratory to demonstrate benzoylation-related experiments to students in order to minimize their exposure to toxic chemicals. Furthermore, benzoylation capacity of the same matrix was evaluated to protect the N-terminal end of amino acid (glycine). It was found that sodium bicarbonate matrix satisfactorily participates in benzoylation of glycine (1c); however, the net reaction time and yield had been compromised.

Among the synthesized compounds, 1a (91%) was found in higher amounts followed by 1d (86%), 1c (63%), 1h (62%), 1e (57%), 1b (56%), 1g (43%) and 1i (09%) in minute quantities. The

Table 1. Physico-chemical characteristics of synthesized compounds

<table>
<thead>
<tr>
<th>Host reactants/ moles</th>
<th>Benzoylating agent/ moles*</th>
<th>Solvent/quantity</th>
<th>Product</th>
<th>Reaction time/min/°C</th>
<th>Melting point (°C)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aniline/0.01M</td>
<td>Benzoyl chloride (0.01M)</td>
<td>Sodium bicarbonate (10 ml; 10%)</td>
<td>Benzanilide (1a)</td>
<td>01/RT</td>
<td>162/183</td>
<td>91/97</td>
</tr>
<tr>
<td>Phenol/0.01M</td>
<td>Benzoyl chloride (0.01M)</td>
<td>Sodium bicarbonate (10 ml; 10%)</td>
<td>Phenyl benzoate (1b)</td>
<td>25/RT</td>
<td>70/86</td>
<td>56/64</td>
</tr>
<tr>
<td>Glycerine/0.01M</td>
<td>Benzoyl chloride (0.01M)</td>
<td>Sodium bicarbonate (10 ml; 10%)</td>
<td>Benzylic glycol (1c)</td>
<td>33/RT</td>
<td>187/195</td>
<td>63/70</td>
</tr>
<tr>
<td>Resorcinol/0.01M</td>
<td>Benzoyl chloride (0.01M)</td>
<td>Sodium bicarbonate (10 ml; 10%)</td>
<td>3-hydroxy phenyl benzoate (1d)</td>
<td>26/RT</td>
<td>135/145</td>
<td>86/95</td>
</tr>
<tr>
<td>Vanillin/0.01M</td>
<td>Benzoyl chloride (0.01M)</td>
<td>Sodium bicarbonate (10 ml; 10%)</td>
<td>4-Benzoyl-3-methoxy benzanilide (1e)</td>
<td>17/RT</td>
<td>77/87</td>
<td>57/66</td>
</tr>
<tr>
<td>1-Naphthol/0.01M</td>
<td>Benzoyl chloride (0.01M)</td>
<td>Sodium bicarbonate (15 ml; 10%)</td>
<td>Naphthalen-1-yl benzoate (1f)</td>
<td>48/RT</td>
<td>56/65</td>
<td>39/42</td>
</tr>
<tr>
<td>2-Naphthol/0.01M</td>
<td>Benzoyl chloride (0.01M)</td>
<td>Sodium bicarbonate (15 ml; 10%)</td>
<td>Naphthalen-2-yl benzoate (1g)</td>
<td>56/RT</td>
<td>107/111</td>
<td>43/46</td>
</tr>
<tr>
<td>4-Hydroxyacetanilide/0.01M</td>
<td>Benzoyl chloride (0.01M)</td>
<td>Sodium bicarbonate (10 ml; 10%)</td>
<td>4-Acetamido phenyl benzoate (1h)</td>
<td>09/RT</td>
<td>?/?</td>
<td>187/195</td>
</tr>
<tr>
<td>Salicylic acid/0.01M</td>
<td>Benzoyl chloride (0.01M)</td>
<td>Sodium bicarbonate (15 ml; 10%)</td>
<td>2-(Benzoyl) benzoic acid (11)</td>
<td>38/RT</td>
<td>73/77</td>
<td>69/72</td>
</tr>
</tbody>
</table>

* Slightly more; RT, Room temperature; R, Reported; F, Found; ?, Exact value unknown; ** From website.
extent of participation of sodium bicarbonate matrix in benzoylation of mono and polynuclear aromatic compounds was further established by calculating the reaction time ($R_1 = R_2 - R_3$; where R_2 and R_1 indicate the time for completion and initiation of the reaction). The mononuclear ring system containing –NH functionality benzoylated quickly and in higher yield (1a; 1 min 91%) than the mononuclear ring system containing –OH functionality (1b; 25 min 56%).

Anchimeric assistance of neighbouring functionalities on benzoylation efficiency of mononuclear ring/s containing –OH functionality in sodium bicarbonate matrix was also studied. It was found that the ring containing electron releasing group (ERG) as a secondary functionality participated in benzoylation easily; ‘lesser the distance, higher the yield (1d > 1h)’, than ring systems containing electron withdrawing group (EWG); ‘greater the inductive effect, lesser the yield (1i < 1e)’. Furthermore, polynuclear unsubstituted ring bearing –OH functionality benzoylated last (1f > 1g).

Structure-oriented study was also done to investigate rate of benzoylation in novel sodium bicarbonate matrix among ring systems containing –NH and –OH functionalities. It was found that monocyclic rings containing –OH–NH functionality were easily benzoylated to a far greater extent than their polycyclic analogues owing to difference in distribution of electrons in single and multinuclear ring systems. However, rings containing –NH functionality react rapidly (1 min) giving higher yield (91% > 63% > 62%) of benzoylated derivatives (1a > 1c > 1h) than those containing –OH group due to greater electron releasing characteristic of amino functionality than that of hydroxyl functionality. Among mononuclear ring systems containing –OH group along with secondary functionalities, the one containing electron-releasing group benzoylated easily than rings systems containing electron withdrawing group due to assistance of electron releasing group in removing terminal proton of –OH and vice versa.

According to our results, aqueous sodium bicarbonate matrix could be used as an economic, safe and ecologically compatible solvent for large as well as small-scale benzoylation, especially for in-lab demonstration of experiments, preventing direct exposure of students to hazardous chemicals such as sodium hydroxide and/or pyridine, which are carcinogenic, corrosive, hygroscopic, difficult to handle, volatile, inflammable, and highly toxic in nature. Although overall yield of some benzoylated derivatives (1f, 1g and 1i) in sodium bicarbonate matrix is not comparable with classical solvents, synthetic portrait of this technique is unquestionable for 1a, 1d, 1h and 1e (may cause racemization according to previous study). The lower yield of some aforesaid benzoylated derivatives in aqueous sodium bicarbonate matrix could be enhanced either by employing substantially modified mixed solvent system containing certain minimum fixed percentage of conventional solvent along with bicarbonate matrix, or by enhancing the strength of aqueous matrix system used here.

Supporting information: Materials and methods with experimental procedure, including physio-chemical characteristics, qualitative analysis and spectral data of synthesized compounds is given in **Supplementary Material**.

Received 2 January 2017; revised accepted 13 April 2017

**Deepak Chowrasia*
Nisha Sharma

*University Institute of Pharmacy, CSJM University, Kanpur 208 024, India
*For correspondence.
e-mail: chowrasia.deepak@gmail.com