Scanning Sky Monitor on-board AstroSat

M. C. Ramadevi¹*, S. Seetha², Dipankar Bhattacharya³, B. T. Ravishankar¹, N. Sitaramamurthy¹, G. Meena¹, M. Ramakrishna Sharma¹, Ravi Kulkarni¹, V. Chandra Babu⁴, Kumar⁴, Brajpal Singh⁴, Anand Jain¹, Reena Yadav¹, S. Vaishali¹, B. N. Ashoka¹, Anil Agarwal¹, K. Balaji⁴, Manoj Kumar⁵, Prashanth Kulshresta⁵, Pankaj Agarwal⁶ and Mathew Sebastian⁶

¹Space Astronomy Group, SSIF, ISITE Campus, Karthik Nagar, Outer Ring Road, ISRO Satellite Centre, Bengaluru 560 037, India
²Indian Space Research Organisation Headquarters, Department of Space, Antariksh Bhavan, New BEL Road, Bengaluru 560 231, India
³Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeskhind, Pune 411 007, India
⁴Spacecraft Mechanisms Group, ISAC, Old Airport Road, Vimanapura Post, Bengaluru 560 017, India
⁵Control and Digital Electronics Group, ISAC, Old Airport Road, Vimanapura Post, Bengaluru 560 017, India
⁶Vikram Sarabhai Space Center, Thiruvananthapuram 695 022, India

Scanning Sky Monitor (SSM) on-board AstroSat is a wide-field imager to monitor the X-ray sky in the energy band 2.5–10 keV. The primary science objective of SSM is to detect and locate transient X-ray sources in the sky. Once detected the information is to be provided to the astronomical community for follow-up observations to do a more detailed study of the source. Long-term monitoring of known X-ray transient sources is also one of the science objectives of SSM. The instrument constitutes three units of 1D position-sensitive proportional counters with coded masks on each, all mounted on a platform capable of rotation to scan about 50% of the sky in one full rotation. The angular resolution of each unit in SSM is 12′×2.5″. Sensitivity of SSM is ~30 milliCrab at 3 sigma in 10 min integration time. This article briefly discusses the instrument and a few early results since the launch of AstroSat.

Keywords: AstroSat, crab, scanning sky monitor, X-ray transient sources.

Introduction

ASTROSAT¹,², India’s first multi-wavelength satellite to observe the Universe in the broad energy band spanning from optical, near-UV (NUV), far-UV (FUV), soft X-rays to hard X-rays, was launched on 28 September 2015, by the Indian Space Research Organisation (ISRO). There are five payloads on-board AstroSat: Ultra Violet Imaging Telescope (UVIT), Soft X-ray Telescope (SXT), Scanning Sky Monitor (SSM), Large Area X-ray Proportional Counter (LAXPC) and Cadmium–Zinc–Telluride Imager (CZTI).

X-ray transients are the brightest class of X-ray objects in the sky. These transient X-ray sources, which are usually below detection level, exhibit increase in their intensities by factors of few tens to hundreds, which in turn can be different every time an outburst occurs. It is necessary to detect these transient sources during the outbursts for a detailed study of the emission mechanisms and the physics driving such intense X-ray emissions. In order to detect these sources during an outburst, it is required to keep scanning as much of the sky as possible with wide-field instruments, called sky monitors, which detect and locate these sources in the sky.

A number of sky monitors flown till date have helped discover several X-ray sources and a fairly good knowledge of these systems exists today due to detailed study of these sources. The All Sky Monitor (ASM) on RXTE³ had done long-term observations of the X-ray sky adding a number of new X-ray sources to the already existing source catalogue generated by earlier sky monitors. SSM² on-board AstroSat is a wide-field X-ray sky imager to scan the X-ray sky for transient sources in the energy range 2.5–10 keV. At present, in addition to SSM on-board AstroSat, the Monitor of All-sky X-ray Image (MAXI)⁴ on-board the International Space Station (ISS) is doing an all-sky survey for X-ray sources.

Figure 1. (Left) Field of views (FOVs) of three units of the Scanning Sky Monitor (SSM). (Right) Sky coverage in one full rotation of SSM – blue region is covered by SSM3, while blue and purple together are covered by SSM1 and SSM2.

*For correspondence. (e-mail: ramadevi@isac.gov.in)
Instrument details

Scanning Sky Monitor, as the name suggests, is a sky monitor with wide-field imaging capability with 1D coded mask, a first of its kind in India, with every element of it made indigenously. It comprises of three almost identical, position-sensitive, gas-filled proportional counters. Each unit has a collimator to define its field of view (FOV) with a 1D coded mask mounted at the top. The wide-field imaging in SSM to find the location of the transient is possible with the help of the coded mask and the position-sensing capability of the anode wires in the detectors. Each unit has its own electronics associated with it to do the processing of every event incident on the detector. Each camera has a FOV of \(\sim 22^\circ \times 100^\circ\) (for centre SSM) and \(\sim 26.8^\circ \times 100^\circ\) (for edge SSMs). The two edge cameras (SSM1 and SSM2) are slanted with respect to each other, and overlap near their centres, as shown in Figure 1. The angular separation between the long axes of these cameras is 24°. This arrangement enables one to obtain better localization for any source along the long (Y) axis of the camera, which for a single camera reconstruction is geometrically limited to about 2.5°. The two edge cameras are canted by 45° from the base of the platform. Figure 1 also shows the sky coverage in one full rotation of SSM. SSM scans almost 50% of the sky in one full rotation.

The three detector units and all the associated electronics boxes are mounted on a platform capable of rotation. Figure 2 shows a photograph of the three cameras of SSM with electronics mounted on a single platform. The platform can be rotated with the help of a rotating mechanism and its respective electronics, so that the instrument can scan the sky. SSM is mounted on the +YAW side of the spacecraft, as shown in Figure 2. All the other instruments point to the +ROLL axis of the spacecraft. More detailed description of the instrument can be found in Ramadevi et al.\(^7\).

Angular resolution of SSM is 12 arcmin in the coding direction and that across is 2.5°. Energy resolution of SSM is about 25% at 6 keV, and position resolution is \(\sim 1\) mm at 6 keV. Sensitivity of each SSM unit is \(\sim 30\) milliCrab at 3 sigma for 10 min integration. SSM with its large FOV covers almost 50% of the sky in 6 h in step and stare mode of 10° step with stare time of 10 min each, with one full rotation of the platform.

On-board performance of SSM

Following the successful launch of AstroSat on 28 September 2015, SSM was powered ON, on 12 October...
The standard X-ray source Crab was in the FOV of SSM1 and SSM2 cameras during the first power ON, while SSM3 was seeing a different FOV in the sky. The first orbit data with filtration of events from SAA regions and Earth-occult regions were processed to get the sky image with Crab at the centre of its FOV (Figure 3). Figure 4 shows the light curve of Crab X-ray source, for a short period, generated with flux extraction of the source after coded-mask imaging. The light curve is compared with the corresponding light curve from MAXI, which is a sky monitor by JAXA on-board ISS at present. It can be seen that there is a one day periodic variation in the light curve, expected to be due to orbital variations that needs to be modelled and re-moved, which is underway. More information on initial results can be found in Ramadevi et al. 

Conclusion

Following the successful power ON of all the three SSM cameras, various interesting observations were carried out. These include detecting the beta class variability of the enigmatic black hole source GRS 1915+105 (ref. 10), and detecting pulsations in known pulsars like Cen X3, Vela X1 and Her X1. Also the Be X-ray pulsar 4U 0115+63 was caught in its outburst in October 2015 and pulsations were detected in the source. Figure 5 shows a select region of the light curve of the Be pulsar during its outburst, which is generated from the temporal data of SSM. With all these interesting results in the initial phase of operation, SSM is expected to bring out more interesting observations in its current phase of operations.