behaviour from either species. While all its workers died over the next few weeks, the queens of L. humile survived for more than 100 days. Figure 1b provides details on worker survival and movement of L. humile queens to T. nigrerrimum nests. Though the figure shows data only for 65 days, we maintained the replicates that showed nest-sharing. In these replicates we found L. humile queens surviving for more than 100 days in T. nigrerrimum nests, even without a single L. humile worker.

To the best of our knowledge, there are no previous reports on the non-aggressive, non-evasive, conflict-free coexistence and co-nesting of L. humile inside the nest of another ant species. This is in contrast with the characteristic highly aggressive behaviour of L. humile workers, which usually leads to emerging competitively superior against other species⁶. This coexistence is also different from the escape and evasive behaviour shown by L. humile, when in small numbers, against other ant species⁶. Results seem to suggest a survival mechanism in an extreme condition when the worker population of L. humile had dwindled to a small number. L. humile queens that had moved to the T. nigrerrimum nests survived for several weeks even without a single worker. This is unusual since L. humile queens suffer 75–100% mortality without their workers⁷. Co-nesting and coexistence as seen here, therefore, could be a desperate and risky survival strategy on part of L. humile queens. Absence of L. humile workers indicates that either L. humile queens did not reproduce in T. nigrerrimum nests, or the eggs laid by them did not survive. This also indicates a survival and reproductive dead-end for L. humile queens, unless co-habitation was used as a temporary strategy.

The simplest explanation might be that T. nigrerrimum could not recognize and differentiate between their own and L. humile individuals owing to factors such as laboratory conditions and the same diet, which could have led to similar cuticular hydrocarbon profiles. However, lack of nestmate recognition seems a less plausible reason because high aggression was still observed during the first few days in these three replicates. Moreover, in many simultaneously running replicates, species recognition was observed. Though co-habitation between other ants, as well as ants and invertebrates has been reported before (for example, mixed ant nests, parasitic ants, lycaenid butterflies in ant nests, myrmecomorphic spiders and other myrmecophilous organisms in ant nests⁸), to the best of our knowledge, coexistence of a global invader such as L. humile with other ants has not been reported either in the laboratory or in the field. Detailed investigations into scenarios under which such rare behaviours are displayed should be conducted. More broadly, such studies may give important insights into the novel mechanisms employed by an invasive species to survive under unfavourable conditions.

Our experiments comply with the Association for the Study of Animal Behaviour/Animal Behaviour Society Guidelines for the Use of Animals in Research, and with regulations of animal care in France.

The authors declare no conflict of interest.


ACKNOWLEDGEMENTS. We thank Oliver Blight for help with field work and for useful discussions; Cleo Bertelsmeier for help with field work; Raphael Bertram and Camille Leclerc for assistance with laboratory experiments, and the two anonymous referees for their critical comments that helped improve the manuscript. This work was supported by L’Agence Nationale de la Recherche (ANR) RARE and Invacost grants, and by the Biodiversa FF1 grant.

Received 16 July 2016; revised accepted 17 February 2017

ALOK BANG1,2,*
Gloria M. Luque1
Franck Courchamp1

1Laboratoire Ecology, Systématique & Evolution UMR CNRS 8079, Université Paris Sud, Orsay 91405, France
2Alternative Agriculture Resource Centre, Chetana-Vikas (Consciousness-Development), Wardha 442 001, India
*For correspondence.
e-mail: alokbang@gmail.com

Nine million-year-old ape-like fossils found at Harityalangar, India

The Middle Siwalik sediments exposed at Harityalangar (31°32’N, 76°38’E), India are best known for the diversity of fossil primates that no longer inhabit the Sub-Himalaya, including the late surviving large hominoids *Sivapithecus* and *Indopithecus* as well as primitive lemuroid primate, such as *Indraroris* and *Stivaladapis*. However, one poorly known species of primate from Harityalangar is represented by an isolated and heavily worn upper third molar found in the 1970s. The specimen was initially identified as *Pliopithecus krishnaii*⁹, but was later transferred to a new genus *Krishnapithecus*⁹.⁰ No additional finds of this enigmatic primate have been made in the intervening four decades, and as a result its place in primate evolution has been difficult to determine. Recently, two lower molars, consistent in size and morphology to *Krishnapithecus*, have been discovered at Harityalangar. If they prove to belong to the same species, they will offer important clues to clarify its taxonomic status and understand its evolutionary relationships. Preliminary
comparisons point to affinities with the pliopithecoids, a group of primitive Old World higher primates that were widespread in Eurasia during the Miocene (from 18 to 7 million years ago), but their fossil record in South Asia is virtually unknown.

The fossils come from the middle level of the Haritalyangar stratigraphic section, which has a lithostratigraphic profile typical of the Middle Siwaliks of the Potwar Plateau in Pakistan. The strata at Haritalyangar constitute a 1600 m thick succession of alternating mudstone and sandstone. The fossil-bearing horizon at the discovery site consists of a pale pink mudstone, which was initially correlated with the lithounit 60/61 in Normal Polarity N3 zone in the geomagnetic polarity time scale, but was more recently revised to correlate with the N5 zone. In this case, the new primate fossils can be dated to ~9.0 Ma (Figure 1). The specimens were collected in association with Rhizomyides spp., and a new rare finding of a chameleon.

The composition of the mammalian fauna from Haritalyangar indicates a warm temperate climate at low altitude with a predominance of mixed forests and patches of woodland.

The new fossil primate finds consist of two lower molar germs (i.e. permanent teeth that are unerupted and still forming in the lower jaw) from different individuals (Figure 2). The crowns of both molars are fully formed, but there is no root formation. This indicates that they belonged to infants of slightly different ages at the time of their deaths. One specimen (PRS03/12) is a partial right first molar (RM1: 8.7 mm in length), and the other is a complete (PRS04/12) left second molar (LM2: 9.5 × 7.9 mm). A portion of the M1 crown got detached from the buccal side and was lost post-fossilization. The teeth are much smaller than those of contemporary Sivapithecus, and they probably belonged to a primate that was slightly larger than the living siamang (9–13 kg). In addition, the teeth exhibit a unique and distinctive morphology. Five well-spaced cusps, connected by low, rounded crests, are arranged around a deep central basin. The cusps are tall and conical with deep V-shaped valleys between them. The groove pattern in the central basin is simple and V-shaped. A shallow triangular fovea on the buccal side of the talonid basin represents a pliopithecinine triangle.

The broken face of M1 exposes a longitudinal section through the crown, which reveals that the enamel was relatively thin. A detailed comparative morphometric study of the fossil material by the authors is currently underway, which will address more elaborately both the taxonomic assignment of the new specimens.

Figure 1. Magnetic polarity stratigraphy of Haritalyangar, India showing the date of the Krishnapithecus fossil findings with a star.

Figure 2. Recently discovered molars from Haritalyangar in different views. a, partial RM1 (PRS03/12) in occlusal view. b, Buccal view showing the broken section with the enamel-dentine junction exposed. c, LM2 (PRS04/12) in occlusal view and labelled. d, Basal view showing the lack of root formation. Bar scale = 1 mm.
as well as their phylogenetic relationships.


ACKNOWLEDGEMENTS. We thank the editor and the reviewers for their valuable comments and suggestions. The fieldwork was sponsored and carried out by A.R.S. during 2012 under the platform of Palaeo Research Society (Regd.), and the specimens bear the museum numbers of the Society (PRS03/12 and PRS04/12). A.R.S. thanks S. L. Sharma for field assistance.

Received 24 June 2016; revised accepted 8 February 2017

ANEK R. SANKHYAN¹,*
JAY KELLEY²
TERRY HARRISON³

¹Palaeo Research Society, IPH Colony, Ghumarwin 174 021, India
²Institute of Human Origins, Arizona State University, Tempe, Arizona, 85287, USA
³Department of Anthropology, New York University, 25 Waverly Place, New York, 10003, USA
*For correspondence.
e-mail: arsankhyan@gmail.com