Dry matter partitioning and growth analysis of soybean grown under elevated CO\textsubscript{2} and soil moisture levels

The growth of plants is influenced by above- and below-ground environmental conditions. Elevated CO\textsubscript{2} tends to enhance growth and yield of majority of the agricultural plants1,2 and generally increase plant productivity and water-use efficiency3. However, the long-term response depends on environmental constraints. It is expected to increase the incidence of extreme weather events, viz. heat waves, heavy rains, drought, floods, etc. making agricultural production more unpredictable and difficult due to climate change4-6. Under the climate change scenario, many of the environmental factors, e.g. water, temperature, light, nutrition, salinity, air pollutants, etc. have significant interacting effects with increased CO\textsubscript{2} concentration influencing greatly on root dynamics of many plant species5,6. The findings of increased CO\textsubscript{2} on crops vary with different soil moisture regimes7. The altered physiology of crop plants with climate change8 and shift in rainfall pattern at regional scale leading to decreased soil water availability, ultimately impacting on crops yield and food security9. The interactive feedback of elevated CO\textsubscript{2} and plant water stress affect carbohydrate concentration in plants10. This study presents the combined feedback of CO\textsubscript{2} enrichment and soil moisture levels on partitioning of dry matter, root growth parameters and growth analysis of soybean plants during vegetative stages of growth.

The study was conducted under control environment using rhizotrons at USDA-ARS National Laboratory for Agriculture and Environment (NLAE) in Ames, Iowa, USA. S21-N0 (Maturity group 2) genotype of soybean was planted at a spacing of 60 × 10 cm in each soil monolith. Soil moisture was maintained uniformly in the soil profile for initial 15 days after sowing (DAS). All environmental parameters were adjusted and controlled automatically by a computer. Two CO\textsubscript{2} concentrations, viz. 380 and 800 μmol mol-1, and three soil moisture levels, namely low, normal and high were studied. The concentration of CO\textsubscript{2} used in the study is just double that of current levels in understanding the physiological response of the crop, and photosynthesis-related genes like RUBISCO may be highly sensitive to CO\textsubscript{2} (ref. 11). In each chamber CO\textsubscript{2} levels were monitored using LICOR infrared gas analyzer (LI-800 Gas Hound CO\textsubscript{2} Analyzer, LI-COR, NE, USA). The response of soybean to elevated CO\textsubscript{2} with soil moisture regimes was assessed at V-3/V-4 (29 days after planting (DAP)), V-6 stage (44 DAP) and at R3 (58 DAP) growth stage of soybean crop. Dry matter partitioning was assessed at all the three stages and expressed in percentage to total dry matter production. Root to shoot ratio (RSR), i.e. ratio of total above-ground dry weight of plant to the total root weight was calculated at 29 and 44 DAS. Net assimilation rate (NAR) and relative crop growth rate (RGR) were also calculated12. Effects of CO\textsubscript{2} levels, soil moisture and interactions were studied and interpreted using the least significant difference at P = 0.05.

The RSR of soybean was significantly lower at 29 DAS under elevated CO\textsubscript{2} (11%), but it was higher by 7% at 44 DAS over plants under ambient CO\textsubscript{2} (Figure 1). Review of the available literature13 revealed that substantial variation in RSR of crop plants with CO\textsubscript{2} doubling where it decreased by 8.5% to an increase of 6.4%, except in sweet potato where it increased by 34.9%. Increased RSR was attributed to propositional allocation of more C to belowground parts of plant. In the present study, high CO\textsubscript{2} might have inhibited the growth at early stage of crop but due to adaptive mechanism of plants to high CO\textsubscript{2} plants were recovered and responded physiologically increased growth at later stage. Our study showed that at early stage of crop plant, growth was inhibited under high CO\textsubscript{2} and at later stage adaptive mechanism of plants to increased CO\textsubscript{2} and

![Figure 1. Elevated CO\textsubscript{2} and soil moisture levels on root–shoot ratio (RSR) of soybean. (Elevated: 800 μmol mol-1 and ambient: 380 μmol mol-1).](image-url)
feedback of plants was physiologically positive. The result is in conformity with that of an earlier study\(^5\); however, some studies have reported slightly faster growth at vegetative stage of soybean crop\(^7\). At early stage (29 DAS), RSR was greater by 43.4% and 32.6% under low and normal soil moisture respectively over high soil moisture conditions, but in the later stage of the crop (44 DAS) the trend was similar (10.9% and 8.7%). This reveals that plants under water stress tend to allocate more carbon to roots for increased uptake of soil water and nutrients by increasing root and soil surface contacts. But, under optimal conditions, CO\(_2\) enrichment did not alter the partitioning of photosynthetic assimilates. At 44 DAS, elevated CO\(_2\) failed to produce more dry matter, but at 29 DAS dry matter partitioning was slightly greater under elevated CO\(_2\) levels (Table 1 and Figure 2). At 58 DAS, soybean plants exposed to elevated CO\(_2\) produced greater dry matter in leaves (93.8%); shoot (83.5%) and total (56.0%). The findings on dry matter partitioning is in conformity with many earlier studies, where annual crops showed greater total dry matter production of soybean\(^1\), dry bean\(^2\), peanut\(^3\) and cowpea\(^4\) under elevated CO\(_2\) levels. At later stage partitioning of assimilated carbon towards the growing organs was greater when soybean plants were exposed to elevated CO\(_2\) levels. However, initial carbon allocation to the roots was higher in plants under ambient CO\(_2\) condition (13.2%) compared to elevated CO\(_2\) levels (11.8%). At 44 DAS, plants allocated more carbon to roots (9.1%) under elevated CO\(_2\) levels against plants under ambient CO\(_2\) condition (8.6%).

Partitioning of carbon to leaves was significantly greater under elevated CO\(_2\) levels (55.6%) over plants exposed to ambient CO\(_2\) (53.4%) at 44 DAS. In later stage, accumulated carbon was transported to pods from leaves and stem and showed greater carbon partitioning to pods under ambient CO\(_2\) condition (42.6%) against elevated CO\(_2\) levels (30%). Plants under elevated CO\(_2\) levels allocated more carbon to the leaves, thus increasing leaf area thickness and the number of leaves.

Soil moisture showed significant influence on dry matter partitioning of soybean, where plants under low soil moisture condition allocated more carbon to roots, while those under high soil moisture allocated more carbon to leaves. Under normal soil moisture, plants showed balanced carbon allocation to all the parts. Above- and below-ground dry matter accumulation is affected differently by moisture stress, with above-ground plant parts generally being sensitive than below-ground parts\(^5\), because the transpiring plant parts usually develop greater water deficits for prolonged period\(^2\). At 44 DAS, significantly more carbon was allocated to leaves when plants were exposed to low and high soil moisture conditions. Significantly greater amount of carbon was allocated to pods at low soil moisture (39.2%) and to leaves at normal to high soil moisture levels (40.1% and 39.5%) at 58 DAS. However, carbon allocation to stem was not significant for all the soil conditions.

Figure 2. Dry matter partitioning percentage of soybean under elevated CO\(_2\) and soil moisture levels.
Increased carbon partitioning to root nodules may benefit seed protein content of soybean associated with decreased C : N ratio of leaves.

The effect of elevated CO₂ on NAR depends on the age of crop plant, duration of exposure and soil moisture status. At initial stage (29 DAS), NAR was greater by 17.8% under elevated CO₂ levels over ambient CO₂ levels (Figure 3). However, NAR decreased at mid stage (44 DAS); this may be attributed to slow growth of plants under increased CO₂ condition. However, at later stage, i.e. 58 DAS, NAR increased by 73% under elevated CO₂ over ambient condition, which could be attributed to increased number of leaves, leaf area, specific leaf area (SLA), leaf area ratio (LAR), etc. RGR increased by 17.6% under ambient CO₂ level at 44 DAS. It increased sharply by 78.6% under elevated CO₂ levels at 58 DAS. Our results contradict another study, where greater NAR and RGR were reported at initial stage of crop, which decreased with age of the plant. In the present study, both RGR and NAR were greater under elevated CO₂ levels at 58 DAS. Soil moisture did not have a significant effect on RGR and NAR at all the growth stages of soybean. Interaction of CO₂ levels and soil moisture levels was significant only for NAR at 44 DAS. RGR and NAR were greater under normal soil moisture with elevated CO₂ levels. Partitioning of carbon to different parts of soybean was significantly affected by elevated CO₂ and showed positive feedback under optimum soil water for growth. Allocation of carbon to roots at early stage and

moisture levels. Interactive effect of CO₂ concentration and soil moisture levels on carbon partitioning of soybean were significant only for leaves at 58 DAS. The combined effect of increased CO₂ on crop plants varied with different soil moisture conditions, but earlier studies were conducted under favourable soil moisture status. Higher CO₂ concentration with soil moisture at normal status produced significantly more number of root nodules per plant indicating partitioning of carbon to root nodules which contributes greatly for nitrogen fixation.

Table 1. Dry matter partitioning of soybean under CO₂ and soil moisture levels at different growth stages

<table>
<thead>
<tr>
<th>CO₂ levels</th>
<th>29 DAS</th>
<th>44 DAS</th>
<th>58 DAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevated</td>
<td>0.58</td>
<td>2.81</td>
<td>5.11</td>
<td>0.27</td>
<td>1.82</td>
<td>4.73</td>
<td>0.12</td>
<td>0.45</td>
<td>4.97</td>
<td>0.94</td>
<td>5.07</td>
<td>17.20</td>
</tr>
<tr>
<td>Ambient</td>
<td>0.53</td>
<td>3.14</td>
<td>11.39</td>
<td>0.26</td>
<td>2.24</td>
<td>2.56</td>
<td>0.11</td>
<td>0.50</td>
<td>4.58</td>
<td>0.89</td>
<td>5.87</td>
<td>10.98</td>
</tr>
<tr>
<td>Change (%)</td>
<td>8.9</td>
<td>–10.7</td>
<td>–55.1</td>
<td>3.1</td>
<td>–18.7</td>
<td>84.7</td>
<td>3.6</td>
<td>–10.4</td>
<td>8.6</td>
<td>5.9</td>
<td>–13.7</td>
<td>56.6</td>
</tr>
<tr>
<td>LSD</td>
<td>NS</td>
<td>**</td>
</tr>
</tbody>
</table>

Soil moisture levels

Low	0.53	2.92	4.38	0.25	1.91	2.84	0.13	0.46	4.42	0.90	5.28	11.63
Normal	0.55	3.18	7.76	0.28	2.31	4.97	0.12	0.53	5.78	0.95	6.01	18.50
High	0.57	2.84	4.89	0.26	1.86	3.13	0.10	0.43	4.14	0.91	5.12	12.14
LSD	NS	NS	**									

| CO₂ × moisture | * | NS | ** | NS | NS | ** | NS | NS | NS | NS | NS | NS |

*Significant at P = 0.01; **significant at P = 0.05.

Figure 3. Net assimilation rate (NAR) and relative growth rate (RGR) of soybean under CO₂ and soil moisture levels (L, Low; N, Normal; H, High; Elevated: 800 µmol mol⁻¹ and Ambient: 380 µmol mol⁻¹).
above-ground parts during vegetative stage of soybean was greater under elevated CO₂ levels with normal soil moisture. Root nodulation and nitrogen fixation were found to increase under increased CO₂ levels, but partitioning of carbon towards grain and leaves needs further investigations. RGR and NAR were greater under normal soil moisture with elevated CO₂ levels associated with increased number of leaves, leaf area, SLA, LAR, etc.

4. IPCC, Climate Change 2001: Impact, aDaStation, and Vulnerability, A report of working Group II of the Intergovernmental Panel on Climate Change, 2001, p. 18.

ACKNOWLEDGEMENTS. We thank NLAE/USDA Laboratory, Iowa State University, Iowa, USA; USAID and USDA for technical and financial support under USDA-GRA fellowship programme.

Received 26 August 2015; revised accepted 28 June 2016

M. Madhu1,2*
JERRY L. HATFIELD3

1ICAR-Indian Institute of Soil and Water Conservation, Research Centre, Sunabeda, Korapat 763 002, India
2National Laboratory for Agriculture and the Environment, Ames, Iowa 50011, USA
*For correspondence.
e-mail: madhupmd@gmail.com

Aconite from Sikkim Himalaya, India

While working on the taxonomy of genus Aconitum from India, we collected specimens from East region of Sikkim Himalaya during September 2014, where we came across a small population of Aconitum taxon which was apparently different from other existing populations in the surrounding area. On critical examination, we observed that these specimens were strikingly different from the rest of the collections in Sikkim Himalaya. Detailed morpho-taxonomic studies revealed it to be an undescribed taxon, showing close affinity with A. spicatum. This new species is named as Aconitum arunii after Arun Kumar Pandey (Department of Botany, University of Delhi, India) to honour his remarkable contributions to the knowledge of angiosperm systematics of Indian flora. The new species is described here.

Aconitum arunii sp. nov. (Figure 1).

Type: India, East Sikkim, Kupup, 3943 m, 12.09.2014, T. Husein & P. Agnihotri 257637 (holo. LWG; iso. LWG).

Diagnosis: A. arunii is closely allied to A. spicatum Stapf, but differs from it in having clawed bracts, hairy linear bracteoles, upwardly directed beak of upper sepal, flattened and conspicuously veined lobes of petal tip and prominent staminal teeth.

Erect herbs, 1 m high, stems much branched, densely strigose towards apex, obscurely angular, hollow. Leaves cauly; petioles up to 8 cm long, sheathing with dilated base, retrorsely strigose; lamina reniform, 1.5–5 × 5–14 cm wide, deeply cordate at base, three-palmatifid; central lobe narrowly rhomboid, apically 2–3-lobulate; lobules dentate; teeth ovate or triangular, mucronate at apex; lateral lobes obliquely flabellate, unequally parted forming two sub-lobes, all lobes similar, cuneate at base, other sub-lobes 2–3-lobulate, lobules dentate. Racemose panicles 22–36 cm long, retrorsely dense hairy; bracts 1.6–2.2 cm long, tripartite; central lobe 1.4–1.8 cm long, lobed; sub-lobes 1–2 lobulate, lobules obovate or acuminate; lateral lobes ca. 8–8.5 mm long, similar to central lobe; densely adpressed hairy above and on veins beneath. Flowers blue; pedicels up to 4 cm long, obscurely angled near base, densely spreading hairy; bracteoles two opposite, near the middle of lower

984 CURRENT SCIENCE, VOL. 111, NO. 6, 25 SEPTEMBER 2016