region has good amount of rocky outcrops, mangroves and corals that form the natural habitat for the sea horses. However this is the first observational record of seahorses thrown by the sea waves onto sandy shore.


ACKNOWLEDGEMENTS. We thank Dr P. A. Azeez, Director SACON for encouragement and support. We also thank the Mangrove Cell, Maharashtra for financial support to study the shore birds.

Received 25 February 2016; revised accepted 3 June 2016

Amit Patil1,2
Bhupendra Shrikar3
S. Babu1
G. Babu Rao3
Goldin Quadros3,*

1Salim Ali Centre for Ornithology and Natural History, Annaikatty Post, Coimbatore 641 108, India
2Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India
3For correspondence, e-mail: golding@sacon.in

An unusual diet of Ichthyophis caecilians (Amphibia: Gymnophiona)

Gymnophiona (caecilians) constitute one of the three extant orders of Lissamphibia, the other two orders being Anura (frogs and toads) and Caudata (newts and salamanders). The 207 nominate caecilian species1 described to date under 10 families2 are confined to certain tropical and subtropical regions of South America, Africa and Asia. The habitat of most caecilians is moist and porous soil that is rich in humus and organic matter. Whereas members of the South American Typhlonectidae include aquatic and semiaquatic forms3. A detailed understanding of caecilian biology and behaviour has remained elusive because of their fossoriality3. The scanty account of their ecology is essentially based on incidental observations made on a small number of caecilians in the captive settings such as in laboratory or museum collections4.

Caecilians are considered as generalist predators5. They feed primarily on soil ecosystem engineers: ants, termites and earthworms6. Occasionally they feed on dipteran larvae, centipedes, antlions, thrips and slugs7 and very rarely on vertebrates such as scolecodophidian snakes (Schistometopus thomense)8, lizards (Dermophis mexicanus)9, small fishes (Chthonerpeton haydenii)10 and frogs (Chthonerpeton indistinctum)11. The major reported predators of caecilians are snakes3,12 with occasional records of carnivorous birds, fishes, turtles, frogs, dogs and aquatic mammals8. However, there are no reports of caecilians preying on other caecilians.
We report here two instances of unusual feeding behaviour observed in Ichthyophis caecilians.

In the first instance, a female unstriped ichthyophiid caecilian *Ichthyophis cf. bombayensis* was collected by digging (10 cm deep) the moist soil (temperature 24°C, pH 6.72) surrounding the banana plants owned by Rajendra P. Kerkar of Keri village (15°36.80’N, 74°04.46’E), Sattari taluk, North Goa district, Goa between 1600 and 1700 h on 1 November 2014. The specimen was euthanized using MS 222 within 2 h of capture and stored in 70% ethanol. Dissection of *I. cf. bombayensis* with the aid of a stereo-zoom microscope on the next day of field collection revealed the presence of a head first ingested male indo-typhlid caecilian *Gegeneophis goaensis* in the stomach that was folded along its long axis in several places with several severe bite marks on its head. Pieces of earthworms and invertebrate insect larvae that were beyond recognition due to advanced stage of digestion were also procured from the gut of the prey. Both the specimens (prey and predator) are deposited in the museum of Department of Zoology, Bangalore University, Bengaluru bearing the vouchers BUB1317 and BUB1319 respectively.

In the second instance, a striped mature male *Ichthyophis kodaguensis* (BUB1273) was collected from Bola-mudi estate, Mercara about 20 km from its type locality on 23 November 2010 between 1600 and 1700 h. *I. kodaguensis* was maintained in the laboratory in a terrarium containing soil brought from its site of collection mixed with soil from local garden along with colchicine-treated *Gegeneophis krishni* collected from a garbage pit, behind the KSRTC depot, Mangaluru town and about 30 earthworms of the genus *Pheretima* collected from local garden. Incidentally during the dissection of *I. kodaguensis* that was to follow by anaesthetizing essentially for chromosomal preparation after 12 h of colchicine treatment as a pretreatment solution has revealed the presence of a female *G. krishni* (BUB 1281) in the posterior part of small intestine. The prey (*G. krishni*) was found to be with open mouth, highly twisted around 4–5 places along its long axis, with several bite marks along its body and severe wounds near the anterior end of the body. All along its length, the

Figure 1. Intergeneric predation in ichthyophioid caecilians. a, Dissected out stomach of *I. cf. bombayensis* displaying of the ingested prey (*G. goaensis*): Live specimen of *I. cf. bombayensis* (inset); b, Enlarged portion of the head first ingested prey (*G. goaensis*); c, Partially digested *G. krishni* procured from the intestine of *I. kodaguensis*. 
The body of the prey was coated with a thick layer of soil mixed with mucus (probably released by the earthworms after being digested by the predator). In both the cases, a predator–prey situation is encountered despite abundant availability of their natural diet in the form of soil ecosystem engineers.

The present study was approved by the Institutional Animal Ethics Committee, Bangalore University, Bengaluru, India.

To our knowledge, this report of caecilians preying on other caecilians appears the first case of intergeneric predation in these endogeic amphibians. The larger body size of the predator (I. cf. bombayensis or I. kodaguensis) enables to engulf the small body-sized prey (G. goaensis or G. krishni). How prevalent is this unusual feeding behaviour among caecilians needs to be addressed.

Further studies on this unusual feeding behaviour among caecilians need to be probed since, predator–prey interactions are widely recognized and seem to bear important implications on problems pertaining to population dynamics.\footnote{1,15} Identifying predators of caecilians is important in the context of the virtuality of caecilian decline, because predation may serve as a pointer to already declining populations that in lower concurrence leading towards extinction.\footnote{10,16}


Received 21 December 2015; revised accepted 10 June 2016

Govindappa Venu\footnote{Centre for Applied Genetics, Department of Zoology, Bangalore University, Bengaluru 560 056, India}, Sagar Krishna Parwar\footnote{Department of Zoology, Goa University, Taleigao Plateau, Goa 403 206, India}*

Govindiaah Venkatachalaiah\footnote{For correspondence.

*For correspondence.

e-mail: venugcaecilian@gmail.com}