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EPARATED by an interval of about two
centuries and a half, the mathematical
heritage of mankind was enriched by two
rematkable men—Newton born 1n  Britawn,
25 December 1642, and Ramanujan born in
India. 22 December 1887. They had jJjust a
Jittle in common; but they differed widely In
most matters—even in the force that pulled
them to mathematics.

1. DISSIMILARITIES

Newton speni his early years in fairly com-
fortable circumstances, in spite of his father
dying before his birth and his mother re-
marrying before he was three; Ramanujan’s
parents, though both were living, could not
keep him above want till he began to earn.
Refore entering adulthood, Newton had passed
through the University of Cambridge, learned

virtually all that could then be leal‘njt in
mathematics and contacted the eminent
mathematicians and natural philosophers of

his days, either as teachers or as friends; but
till his twenty-fifth year Ramanujan could
not come across any who would understand
him or his language and siill less teach hum,
nor could he f{inish the university course hor
know the then state of mathematical know-
ledge. Nectwithstanding his anxiety to avoud
‘contention’ of any kind, Newton’s discoveries
involved him in {frequent and bitter contro-
versies and much tension prevalled between
him and his peers; it was, on the other hand,
an atmosphere of uniform and spontaneous
admiration, love and respect that surround-
ed Ramanujan after he was discovered.
Newton was long-lived: Ramanujan died

prematurely.
2. SIMILARITIES

And vet they had just a few things 1n
common. Mathemalics was the meeting ground
of the two geniuses, though they approached
it from different directions. Their life’s work
was done by the time they were thirty, though
one lived for half a century thereafter and
the other gave up his mortal coil almost 1m-
mediately. Newton wrote down his results 1n
diaries, leiters and note-books, most of wh@ch
are still preserved in some British libraries
and had been all published in his own days
though it was a jcb to make him release them
for print; Ramanujan too wrote down hls
results systematically in a note-book whirh
he left behind in England, where I was fortu-
nate to pick it up in 1925 though it was 1n
a tattered state; and it is now the most pre-
cious possession of the Madras University
Library, still awaiting publication as a wholc.
The Royal Society elected both of them as
its fellows hefore they passed thirty.

3. INTEGRAL CALCULUS

Newton’s bovhood had been rich in hobbies
of a mechanical sort like making Kites, sun-

dials and windmills. Kepler's Optikas is said
to have been the first book to engage his seri-
ous thought. Consistently with this, one of the
important bocks that Newton himself publish-
ed was his Opticks (1704). He would grind
lenses and if the telescope could not be made
achromatic, he would invent a nesw type of
telescope, the reflecting one. Consistently
with this if a mathematical tool was wanting
or defective, he would improvise a new tool
or sharpen what existed. When his theory of
gravitation led him to calculate the atiraction
of a sphere, which he could not do by the then
kKnown mathematical toels, he invented a new
tocl—the integral calculus. Particular prob-
lems of finding lengths, areas and volumes
had been solved before him by special devices:
but a general tool applicable to all similar
problems was invented only by Newton and
that because his preoccupations with his theory
of gravitation needed it. The Tractatus di
quadratura curvarum first appeared as an ap-
pendix to his Opticks.

4. (CONICS

The determination of a central orbit as a
conic Involved Newton in facing the problem
of finding the conic when a focus and three
other conditions or any other five c¢onditions
were given. These were fully investigated in
the Principia (1687).

5. PROBLEM oOF THREE BODIES

The phenomenon of tides echallenged Newton
for an explanation on the basis of his theory
of gravitation. While Proposition 66 of Book I
and 24 and 26 of Bock III of the Principia
were turned on it directly, the foundations of
the profound problem of three bodies were
also laid incidentally.

CALCULUS OF VARIATIONS

In considering the form of ships, Newton
was obliged to determine the shape of bodies
of revolution that will experience the least
resistance when moved in the line of ity axis.
He improvised in 1686 a new tool to do this
job and showed it to Fatio Daillier who pub-
lished 1t 1n the pamphlet Investigatie geometrica
solidi rotundt in quod minima fiat resistantin
(1699). This tool, the calculus of wvariations,
was lost sight of, until it was rediscovered by
Lagrange 1n 1762,

CaLcuLus OF FINITE DIFFERENCES

Proposition 40 of Book III of the Principia
is followed by Lemma 5 which gives a general
solution of the problem: “To describe a geo-
metrical curve which shall pass through any
given points”’—the fundamental proposition of
the calculus of finite differences. Methodus
differentiates (1711} which gives- another solu-
tion of the same problem was first translated
into English in the pages of the Journal of the
Institute of Actuaries in 1918.
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Cusics

The Enumeratio linearum tertu ordinis which
appeared as an appendix fto Opticks was
the first systematic contribution to the theory
of higher plane curves. 72 species of cubics were
enumerated. As many propositions were with-
out proof, this became one ofi the most com-
mented of Newton’s works. His method of
classifying cubics appears to have inspirad
Waring to apply it to the gquartic of which he
obtained 84,551 species. To evaluate Newton’'s
contribution to this field, we should remember
that the modern tool of projective geometry
had not yet been forged.

CALcyuLUus OF FLUXIONS

The most discussed of Newton’s tools from
the point of view of priority of discovery is
the calculus of fluxions. This again was forg-

ed to meet a definite situation in the determi- -

nation of orbits. In fact he first invented the
bincmial theorem and then this calculus. The
Principia had given its substance without the
name in certain propositions of Book I. Evi-
dently influenced by his dynamical interests,
Newton regarded all variables as functions of
time and all wvariation as primarily happen-
ing as time flows on. He, therefore. inventied
a calculus to determine the rate of change

of any magnitude regarded as a function
of time. These rates were called fluxions.
They were with respect to time. The rate

of change c¢f a magnifude x with respect
to another magnitude y he defined as the
ratio of the fluxion of x to the fluxion of y.
In spite of Newton’s fluxional approach pro-
viding the beginner with an intuitive and
familiar illustration of the concepts of calculus
and in spite of time having been appropriately
basic in the specific problem that led TNewton
to its discovery, it was soon felt that it was
neadless to drag in time where 1t was not con-
cerned; and Leibnitz produced a calculus un-
obsessed by the spirit of time. But insularity
kept out for long the more fertile calculus of
Leibnitz from the home of Newton. It was
not till 1812 that the sterile calculus of fluxicons
was deposited in the museum. In that year
the Analytical Society of Cambridge was found-
ed to adopt Leibnitz in place of Newton; or
as Babbage, one of its founders, put it, “To
promote the principles of pure D-i1sm in oppo-
sition to the Dot-age of the University’. Non-
mathematical readers can see the pun if they
are told that the notation for the differential
ccefficient of * was £ (x dot) in Newlonian
calculus and Dx (Dee x) in Leibnitzian cal-

culus.
NEWTON’S APPROACH

Thus Newton’s approach to mathematics was
from the side of physics and the phenomena
of the material universe and for the pur-
pose of employing it as a tool. Concrete
phenomena are ever so complex and there is
no end to the variety of tools which thev call
for. Even to-day mathematics is being en-
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riched by new ftools demanded by newly dis-
covered phenomena in phvsies; witness the
calculus of cperations, the calculus of tensors
and the theory of Wave Function. Green,
Kelvin and Poincare are some of the later
mathematicians who enriched mathematics in
this way. The Indian mathematiciangs of the
Vedic age had enriched geometry similarly,
i.e., by the urge to solve a concrete problem.

BAMANUJAN’'S APPROACH

But Ramanujan’s approach to mathematics
was from another side, the side of forin—its
beauty and potency. Euler, Galois and Riemann
had done so before. The Greek mathematicians
of the classic age had enriched geometry simi-
larly. We saw that Newton’s boyhood-experi-
ence registered with his mcde of approach to
Mathematics. It was so with Ramanuian too.
His boyhcod was spent in making patterns of
magic squarcs, plaving with the formule enu-
merated in Carr’s Synopsis and listening to
puranic discourses cn ilhe infinite attributes of
Goed. Two intimate friends who were with
him wvirtually all through, except during his
sojourn in England, assure me that his sensitive-
ness itc form was unusual and that, as they
could not follow mathematics, he used to
entertain them till late in the night with
interpretations of the Ramnyana and the
Mahabharata based on certain patterns of
thought which were exquisitely beautiful and
the mathematical correlates of which he would
occasionally indulge in expounding.

FORCE OF FORM

Hardy’s reminiscence about the taxi-cab
No. 1729 1s significant. Hardy’s remark that it
was ‘dull’ elicited a prompt reply from Rama-
nujan: “No, it is a very interesting number;
1t 1s the smallest number expressible as a
sum of two cubes in two ways.” Hardy asked
for the corresponding number for fourth
powers and Ramanujan replied, after a mo-
ment’s thought, that the first such number
must be very large. The fascination and force
of form may be traced behind most of
Ramanujan’s work on' the theory of numbers
and -of modular functions. We withessed a
pretly manifesiation of the same in a mathe-
matical social evening at Madras in 1814 in
which Ramanujan pierced, as it were, through
the traditicnal integer-garb of the Leibnitzian
form for the differential coefficient of the nth
order and utilising the Eulerian generalisation
of the factorial into the gamma function enter-
tained the audience with the beauty of frac-
tional differentiation.

COMPLEMENTARY APPROACHES

Both the approaches are necessary to dis-
closz the potency c¢f mathematics. But the
illumination from Ramanujan’s side of ap-
proach is more subtle and visible only to a
seleet few; while that from Newton's side is
more extensive and lights up many a path in
many a field of knowledge.



