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Introduction 

IF pressed to express the difference between the quantum 
and classical philosophies of physics in one pithy phrase 
or sentence, I would say that it lies in the way the two 
approaches conceive of the state of the world, or what it 
means for something to be. In the classical view, a system 
has definite properties at all times, and in principle, these 
properties are all knowable to us with perfect precision. 
In quantum mechanics, this is not so, and there is no sys-
tem for which all the properties are definitely knowable, 
or even definite to begin with. The detailed development 
of the theory in terms of the quantum mechanical ampli-
tude provides a complete prescription for calculating and 
predicting just which properties are indefinite in a given 
situation and in precisely what way. There is however, 
one knotty problem, in that one is compelled to make a 
dichotomy between the observer and the observed for 
which there is no satisfactory basis. It is easy to see why 
such a dichotomy must be made. It is necessitated by the 
underlying idea that the state of a system is indefinite. 
Therefore, its properties cannot be said to have any inde-
pendent existence of their own. They can only be brought 
into existence, or actualized, by the act of measurement. 
This act lies outside the processes by which the world 
goes about its business, and all efforts to bring it into the 
ambit of the latter have so far failed. Capping it all is  
the fact that all experiments to date are consistent with 
the predictions of quantum theory, which have been found 
accurate to better than a part per billion in some cases. 
 Given this state of affairs – of a theory at once so suc-
cessful and so bewildering – it is natural to ask if one can 
enlarge the theory so as to make it compatible with our 
classical world view, and yet retain its quantitative pre-
dictive content. One such suggestion dates to the earliest 

days of quantum mechanics, namely that the properties of 
systems are in fact definite, but are not definitely know-
able. In other words, that a system has hidden variables, 
in terms of which its properties are definite, but that these 
variables are inaccessible to us for some reason. It is dif-
ficult to imagine how such variables could be viable in 
light of phenomena such as two-slit interference, but that 
is not the same as a proof of their nonexistence. This gap 
is filled by the Bell inequality (by which I mean not only 
Bell’s original inequality1, but all subsequent derivatives 
based on the same logic, such as that of Clauser et al.2). 
This inequality is a consequence of any local hidden  
variables theory satisfying a small number of very rea-
sonable requirements. Most importantly, the inequality is 
testable, and as is well-known today, it is violated by the 
experimental data. A large class of theories is thus ruled 
out, and quantum mechanics survives. 
 In the same way, the macrorealistic inequality is a  
consequence of any macrorealistic theory satisfying a 
small number of classical-minded requirements, chief 
among which is that the state of a macroscopic system  
really be definite3. This inequality is also testable, and  
although experiments have been performed to this end, it 
is unclear how significant the tests done to date are. The 
purpose of this article is to review this inequality and one 
of the main experiments4. In addition to their direct  
implications for hidden variables theories, the tests of 
Bell’s inequality have spurred a great deal of experimen-
tal innovation and research into quantum communication 
and information theory. Perhaps the same will happen 
with the macrorealistic inequality. 
 The plan of the article is as follows. The next section 
contains a brief exposition of macrorealism. The inequal-
ity is discussed in the following section, and one of the 
early experiments involving a dc SQUID-based device4 is 
discussed in the text. The implications of the experiment 
are briefly discussed in the conclusion. 

What is macrorealism? 

Phenomena such as kaon oscillations, neutron interfer-
ometry, and Rabi oscillations make it difficult to sustain 
the idea that the state of systems at the microscopic scale 
can be definite. At the macroscopic scale, however, our 
everyday experience is that the very opposite is true. We 
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formalize our classical macroscopic world view, which 
we call macrorealism, in terms of the following three  
assumptions. (A1) Macroscopic realism: A macroscopic 
system with two or more macroscopically distinct states 
available to it will at all times be in a definite one of 
those states. (A2) Noninvasive measurability at the  
macroscopic level: It is possible, in principle, to deter-
mine the state of a macroscopic system with arbitrarily 
small effect on its subsequent dynamics. (A3) Induction: 
If a measurement is made on a macroscopic system, it is 
meaningful to talk about what the result of an earlier 
measurement would have been, had such a measurement 
been made. All three assumptions are implicitly made by 
us without conscious thought countless times every day. 
However, each of them explicitly contravenes quantum 
mechanical precepts. 
 The assumption A1 lies behind our understanding of 
the functioning of every experimental apparatus. Indeed, 
if it did not, we would not trust that our apparatus was 
doing what we wanted it to do. We stress that A1 does 
not require us to actually know the state of the system. 
Thus, we can assert that a coin lying on the floor is either 
heads or tails, even if we do not know which. A strict  
extrapolation of quantum mechanics to the macroscopic 
realm would allow the coin to be in a superposition of 
heads and tails. 
 The assumption A2 is invalid in quantum mechanics, 
but is natural in classical mechanics. For example, any 
thermometer used to measure the temperature of a glass 
of water necessarily draws some heat from the water and 
thus perturbs it, but we believe that we can make this per-
turbation as small as we like. It would in fact be very odd 
to accept A1 but reject A2, because there would then be 
no way to give operational meaning to the notion of being 
in a definite state at all times. Still, we adopt A2 explic-
itly and not as a logical corollary of A1. 
 The assumption A3 is equally natural. Imagine that we 
have 100 identically manufactured balloons, 50 of which 
are released and allowed to float away. The other 50 are 
punctured with a pin. Would this second set of balloons 
also have floated away if they had been released without 
being punctured? Classically, this is an entirely meaning-
ful question, with the clear answer of yes. Quantum me-
chanically, the question is illegitimate. This is the central 
point of Bohr’s reply5 to Einstein et al.6, and is perfectly 
captured by Peres’s7 dictum: ‘Unperformed experiments 
have no results.’ We can assign a value only to those 
physical quantities that the apparatus is set to measure. 

The macrorealistic inequality 

To derive the macrorealistic inequality, let us suppose 
that we can unambiguously divide into two sets the states 
in which our macrosystem can be, and distinguish these 
two sets by assigning to the first a value +1, and to the 

second a value −1 of a variable Q. The value of Q at time 
t is denoted by Q(t). For specificity, we may imagine an 
rf SQUID threaded by an external flux of half a super-
conducting flux quantum. At low temperatures, the low 
energy states correspond to a current in the SQUID ring 
of about 1 nA, flowing either clockwise (Q = +1) or anti-
clockwise (Q = −1). (We assume that the probability of 
observation of any other state is negligibly small, but we 
could include a nonzero value for it without any change 
in our conclusions by extending the analysis in analogy 
with Garg and Mermin8, for example.) The dynamics of 
the variable Q can be arbitrary and unknown, even  
stochastic. 
 We now imagine a large ensemble of such systems, all 
identically prepared at an initial time t0. Next we consider 
three subsequent times t1 < t2 < t3. It is an elementary  
algebraic identity that 
 
 Q(t1)Q(t2) + Q(t2)Q(t3) – Q(t1)Q(t3)  1, (1) 
 
where the quantity on the left in guaranteed to exist by 
assumption A1. The values of Q(t1), Q(t2) and Q(t3) may 
vary from one member of the ensemble to the next, but 
the identity holds for every member of the ensemble. It 
must therefore hold when averaged over the entire ensem-
ble. Denoting this average by angular brackets, we have 
 
 Q(t1)Q(t2) + Q(t2)Q(t3) – Q(t1)Q(t3)  1. (2) 
 
For future reference, we define 
 
 Q(t1)Q(t2) + Q(t2)Q(t3) – Q(t1)Q(t3) = K, (3) 
 
so the inequality (2) is 
 
 K  1. (4) 
 
Next, we divide the full ensemble into three subensem-
bles S1, S2 and S3, each assumed to also be very large. 
We measure Q at t1 and t2 for members of S1, at t2 and t3 
for S2, and t1 and t3 for S3 (Figure 1). We then find the 
average of the measured values of the product Q(t1)Q(t2) 
for subensemble S1, and denote it by Q(t1)Q(t2)S1. The 
averages Q(t2)Q(t3)S2 and Q(t1)Q(t3)S3 are defined in 
the same way. The existence of these averages is assured 
by the assumption A2. For example, for a member of S1 
the value of Q(t2) is unaffected by the measurement of Q 
at t1 and so what we measure for the product Q(t1)Q(t2) is 
the underlying value. We now define 
 
 Kexpt = Q(t1)Q(t2)S1 + Q(t2)Q(t3)S2 – Q(t1)Q(t3)S3.  
 (5) 
 
As the notation suggests, the quantity Kexpt is experimen-
tally measurable. 
 The final step in the argument is to invoke A3, the as-
sumption of induction. Consider the average Q(t1)Q(t3)S3. 
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If instead of measuring Q at t1, we had measured it at t2, 
A3 allows us to conclude that the values we would have 
obtained would have exactly the same characteristics as 
those of subensemble S2, or that if we had made the  
second measurement at t2 instead of t3, we would have 
got exactly the same result as we did from S1. Thus,  
the subensemble averages are identical to those over the  
entire ensemble, and we may write 
 

 Q(t1)Q(t2)S1 = Q(t1)Q(t2), (6) 
 

etc. Hence, 
 

 Kexpt ≡ K, (7) 
 

and the inequality (4) becomes 
 

 Kexpt  1. (8) 
 

This is a macrorealistic inequality. Similar inequalities 
may be derived by considering measurements at four 
times, for example3. 
 Quantum mechanically, it makes no sense to talk of the 
quantity K, but Kexpt is entirely meaningful. In any two-
state situation where we have perfect flip-flop oscillations 
between the two states at a frequency , quantum theory 
predicts that 
 

 Q(t1)Q(t2) = cos (t2 – t1). (9) 
 

Choosing 
 
 t3 – t2 = t2 – t1 =  /3, (10) 
 
we obtain 
 
 Kexpt = 3/2, (11) 
 
and 
 
 Kexpt > 1, (12) 
 
in violation of the macrorealistic inequality. 
 We thus see that quantum theory is at odds with macro-
realism. This is hardly surprising, but just as with Bell’s 
inequality, the significance of the inequality, i.e. eq. (8) is 
 
 

 
 

Figure 1. Illustration of the subensembles S1, S2, and S3. All mem-
bers of all subensembles are identically prepared at t0. The heavy cir-
cles indicate subsequent measurements. 

that it is, in principle, experimentally testable. Since the 
inequality is a necessary condition for macrorealism to 
hold, any experimental observation that it is violated 
would make macrorealism that much less tenable. In this 
connection it is important that the inequality is violated 
by a fairly large margin in the most extreme case, i.e. eq. 
(12). This increases the chances for observing a violation 
when the flip-flop is less than perfect. Naturally, the sys-
tems which are most likely to reveal a violation are those 
which display coherent oscillations of a macrovariable, 
also known as macroscopic quantum coherence (MQC). 
However, as stressed by Leggett9, observation of MQC 
by itself is not sufficient to rule out macrorealism. 
 It is worth making two additional remarks. First, we 
could add to A2 the demand that the measurements be of 
the ideal negative result type. We imagine that the meas-
uring apparatus is set up to respond only if the system is 
in the Q = +1 state, say. Then we are allowed to conclude 
that Q = −1, if the apparatus shows no response. Quantum 
mechanically, a measurement is a measurement is a  
measurement, whether of the positive or negative type.  
Macrorealistically, however, it is difficult to argue that 
the state of a system has been altered by a non-observation, 
and the notion of a nonivasive measurement becomes 
much more credible. 
 Second, many authors refer to macrorealistic inequali-
ties as Bell inequalities in time. While this usage is fine 
in so far as the structure of the mathematical argument is 
similar in the two cases, it is likely to obscure the import 
of the entire exercise. Bell’s inequality derives its force 
from the requirement that the two subsystems be widely 
separated, and would hardly be regarded as relevant to a 
mu-mesic He atom in which we measured the correlations 
of the muon and electron spins (assuming this were even 
possible). In the same way, the macrorealistic inequality 
derives its force from the requirement that the states in 
question be macroscopically distinct. If we find that the 
inequality is violated for a microscopic system, that 
would not be front-page news today. (At least it should 
not be.) 
 (I conclude this section by noting that the assumption 
of induction did not appear in the original paper3, as  
indeed it did not in Bell’s paper1. By the time of writing 
the original paper3, however, the importance of this  
assumption was well and widely established. In addition, 
the three-time distribution  (Q1, Q2, Q3) that was intro-
duced in this paper3 was described in a way that left 
scope for it to be confused for the distribution of three 
actual sequential measurements, as opposed to a postu-
lated distribution which exists only under the truth of the 
assumptions of macrorealism. The first interpretation 
makes nonsense of the entire argument, and so while a 
careful reader might not have fallen into the trap of mak-
ing this interpretation, it should not have entered into the 
writing in the first place. I am certain that neither mistake 
would have occurred if my co-author had not generously 
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let me write the parts of the paper in question, and there 
is no adequate apology that I can make for letting him 
down so completely.) 

The transmon experiment 

In this experiment4, the system is what is now known as a 
transmon10,11, of which we now give a brief discussion. 
Readers interested in a more accurate and detailed one 
must consult the original references (see also ref. 12). 
Very broadly speaking, the transmon consists of a two-
Josephson-junction dc SQUID capacitatively coupled to a 
electromagnetic cavity resonator. The back and forth 
tunnneling of Cooper pairs across the Josephson junc-
tions (also described as a Josephson plasma oscillation) is 
coupled to the oscillations of the electric field inside the 
cavity, and both the plasma oscillations and the cavity 
field oscillations must be regarded as quantum mechanical 
dynamical degrees of freedom in the quantum mech-
anist’s view of the world. The remarkable thing is that a 
large number of experiments on this and related systems 
are strongly in accord with the quantum mechanical  
description (where they would not have been 30 years 
ago), so this patently macroscopic device, made by litho-
graphic deposition of bits of metals and oxides on insulat-
ing substrates, is (at least a priori) a viable candidate for a 
test of the macrorealistic inequality. 
 In what follows, we give a highly condensed discus-
sion of the relevant degrees of freedom and their quantum 
mechanical description. 
 The dc SQUID is formed by connecting two supercon-
ducting islands by two Josephson junctions (Figure 2). 
Cooper pairs can tunnel through the junctions, and if we 
denote the state where the number of pairs on one of the 
islands is N by |N, the Hamiltonian of the junction can be 
written as10,12 
 

 2
J C g4 ( ) | |

N

E N N N N    

 

     J (| 1| h.c.) .
2

E
N N 

    


 (13) 

 

Here, EC is a charging energy reflecting the fact that  
because of the charge on the superconducting islands,  
 
 

 
 

Figure 2. Schematic of the dc SQUID. The two line segments  
labelled 1 and 2 represent the two superconducting elements, and the 
boxes with X’s represent the Josephson junctions. 

there are electric fields between the islands and the  
voltage gate. The energy EC is determined by the various 
capacitances between these elements. Likewise, EJ is the 
Josephson energy reflecting the propensity of Cooper 
pairs to tunnel between the islands. This quantity is  
determined by the intrinsic junction properties (or the  
Josephson plasma frequency, equivalently) and the exter-
nal flux, , through the SQUID loop: EJ = EJ0 cos(/0), 
where 0 = eh/2c is the superconducting flux quantum. 
Finally, Ng  (0, 1) is a charge offset determined by the 
gate voltage and stray environmental charges. The value 
of EJ/EC chosen for transmons is 50–100, which is critical 
to the difference with a Cooper pair box, where EC  EJ. 
For the phase qubit: EJ/EC ~ 104, although this is a  
different circuit from the transmon and Cooper pair box. 
There are no dc connections to the SQUID. 
 As shown in Figure 3, the above device is placed inside 
a one-dimensional (1D) transmission line resonator in the 
form of a long section of a coplanar waveguide (a 2D 
analog of a coaxial cable). The charge distribution on the 
superconducting islands of the SQUID couples to the 
electric field of the resonator, . To a first approximation, 
we may take  as transverse to the long axis of the reso-
nator, ˆ ,x  and write it as a sum of normal modes akin to 
1D standing waves with antinodes at the ends, x =  L/2. 
For the nth mode, the wavenumber kn = n/L, the mode 
function fn(x) is sin knx (n odd), or cos knx (n even), and 
the frequency n = vkn, where v is the speed of a travel-
ling wave. Denoting the inductance and capacitance of the 
waveguide per unit length along x̂  by ℓW and cW, we 
have W W = 1/ .v c  The voltage, V(x, t), between the 
central and outer conductors of the cavity at a position x 
along the long axis can then be written as a linear super-
position of different modes, and since each mode can be 
regarded as an independent harmonic oscillator, we can 
obtain the quantum mechanical operator corresponding to 
V(x, t) by promoting the mode expansion coefficients to  
 
 

 
 

Figure 3. Schematic top view showing the 2D cavity resonator, the 
waveguide in which it sits, and placement of the dc SQUID. The 
shaded regions are superconducting. The sketch is not to scale; in rea-
lity the L/w ratio is larger, and the SQUID loop is much smaller in rela-
tion. 
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harmonic oscillator raising and lowering operators. In 
this way we obtain 
 

 
1/2

†

W
( , ) ( )( ( ) ( )).n

n n n
n

V x t f x a t a t
Lc
 

  
 

   (14) 

 
(One way of seeing that this is correct is to consider the 
potential energy of the charges on the cavity walls. This 
energy is given by integrating cWV 2(x, t)/2 over the 
length of the cavity. If the nth mode is in its ground state, 
the potential energy in that mode should be half the zero 
point energy, i.e. n/4, and this is precisely what eq. 
(14) gives.) 
 Next we discuss the coupling of the SQUID to the  
resonator. Since the SQUID is placed at x = 0, the lowest 
cavity mode with a nonzero coupling is the n = 2 mode, 
whose rms voltage at x = 0 is Vrms = (2/LcW)1/2, and the 
corresponding rms electric field is rms = Vrms/w, where w 
is the distance between the central and outer cavity con-
ductors. If we denote the dipole moment of the charge 
distribution on the islands by d, then the coupling 
strength may be written as 
 
 rms .g d    (15) 
 
Let us now imagine diagonalizing, J, the SQUID  
Hamiltonian (eq. (13)), and thus obtaining eigenstates |0, 
|1, etc. with energies E0, E1, etc. The lower the quantum 
numbers of the states involved, the further away from the 
correspondence limit and classicality one is. The device 
will behave most nonclassically if we can stay just within 
the manifold of the |0 and |1 states, when we will able to 
treat it as a two-state system. Writing Eji = Ej – Ei, it is 
found10 that for the low-lying levels with EJ/EC  20 
 

 , 1 J C C8 .j jE E E jE    (16) 

 
That is, the levels are approximately those of an anhar-
monic oscillator with a spring that is not quite Hookean 
but softens upon stretching. Strictly speaking, we should 
write Ej,j−1 as a function of Ng, the offset charge, and give 
this dependence. For EJ/EC  20, however, this depend-
ence contains an exponential factor J Cexp( 8 / ),E E  and 
is thus essentially negligible. This means that the SQUID 
is highly insensitive to charge noise, or fluctuations in Ng. 
At the same time, the anharmonicity of the energies (eq. 
(16)) is enough that if n = 2 mode of the resonator is 
tuned to the E10 transition energy, the |1  |2 transition 
is essentially never excited. Not only that, but the anhar-
monicity is enough that if we wish to apply  /2 or  
pulses to the SQUID, we can make the pulses broad 
enough in time (and thus narrow enough in frequency) as 
to also almost never excite the |1  |2 transition and yet 
be of durations small in comparison to T1 and T2 decoher-

ence times. (Greater anharmonicity would allow us to 
work with even shorter pulses, but there is not much 
point in doing so as microwave pulses much shorter than 
10 ns are difficult to attain.) It is this combination of 
charge noise insensitivity and sufficient anharmonicity 
that allows us to treat the SQUID in the transmon as an 
artificial atom with just two states, with furthermore, a 
high degree of coherence. It is these two states that will 
correspond to the distinct states of our purported macro-
variable, and to which we will assign the values Q =  1. 
 We arrive in this way at a simplified but quite accurate 
description of a transmon as a two-level atom coupled to 
just one mode of the cavity, or harmonic oscillator. If we 
represent the two-level atom as a spin-1/2 system, and 
make the rotating wave approximation, we obtain the 
classic Jaynes–Cummings Hamiltonian 
 

 † †
10

1 1 ( ).
2 2

z
r a a g a a             (17) 

 

Here, 10 = E10/, r is the resonator frequency, and 
 = σx  i y. We have not shown the couplings of the 
cavity and the SQUID to the rest of the universe, which 
give rise to spontaneous decay of excited states of either 
system. Estimates of the various frequencies may be 
made as follows. For the n = 2 mode, r/2 = v/L. Taking 
L = 1 cm, and v as the speed of light in order of magni-
tude, we get r/2 = 30 GHz. In the experiment4, the 
large dielectric constant of the sapphire substrate reduces 
v, and measured frequencies are r/2 = 5.8 GHz, and 
10/2 = 5.3 GHz. The coupling g may be estimated via 
eq. (15). As is typical of similar coplanar waveguide  
resonators13, the capacitance LcW  1 pF, Vrms  4 V, 
and rms = Vrms/w  0.4 V/m. The dipole moment d is es-
timated as (2  104)ea0 (with a0 the Bohr radius), corre-
sponding to a displacement of the Cooper pair by 0.5 m. 
This leads to g/2 ~ 50 MHz. The significant point here 
is that this coupling is substantially greater than the 
‘atomic’ linewidth   /2 ~ 3 MHz or the cavity line-
width /2  30 MHz (corresponding to a cavity Q-factor 
of about 200, not to be confused with our dynamic vari-
able, Q). It is thus possible to drive many cycles of Rabi 
oscillation between |0 and |1 states of the SQUID. 
 While the coupling is large in the sense just discussed, 
it is also quite a bit smaller in magnitude than the detun-
ing,  = 10 – r. We can then eliminate the atom–cavity 
interaction in eq. (17) to first order in g by an obvious  
unitary transformation U, obtaining 
 

 † †
10

1 ( ) ,
2

z z
rU U a a          (18) 

 

where 
 

  = g2/, (19) 
 

is a dispersive frequency shift, and the primes on 10 and 
r indicate frequency renormalization or shifts of the 
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same order. (In what follows, we shall not explicitly 
show the primes, and use unprimed quantities for the  
renormalized frequencies. Second, a more accurate  
expression for  includes effects from the |2 state of the 
SQUID.) The last term in eq. (18) has the interpretation 
that depending on whether the SQUID is in its ground or 
first excited state, the frequency of the resonator is 
shifted up or down by an amount /2, which equals 
1.75 MHz in the experiment. This is the means by which 
the value of Q is determined, as we now discuss. 
 The experiment consists of applying a continuous  
microwave signal (the drive tone) at 10, and another 
continuous signal (the measurement tone) at r. Because 
the resonance frequency of the cavity is shifted up or 
down by , the cavity oscillator is being driven slightly 
off-resonance, and the reflected signal at the frequency r 
acquires a phase shift that depends on the state of our 
two-level atom, i.e. on the value of Q. This reflected  
signal is homodyned, and both quadratures X(t) and Y(t) 
are measured. The key point is that if the measurement 
tone is weak, both X and Y provide weak, continuous and 
nondestructive measurements of Q(t). We can write 
 
 X(t) = Xavg + XQ(t) +  (t), (20) 
 
where Xavg is some average or dc offset, X  is a scaling 
factor that depends on the details of the analysing cir-
cuitry, and  (t) is noise. A similar expression applies to 
Y(t). It thus follows that a measurement of the X – X cor-
relation X(t)X(t) will contain information on 
Q(t)Q(t). 
 In fact, the experiment does not measure X(t)X(t)  
directly. Rather it measures its Fourier transform or the 
power spectrum SXX() of the X signal. The inverse  
Fourier transform of this power spectrum is then taken to  
obtain Kexpt. The result quoted by the authors is that for 
t3 – t2 = t2 – t1  17 ns, the quantity in eq. (5) is found  
to be 
 
 Kexpt = 1.44  0.12, (21) 
 
in clear violation of eq. (8). We tentatively conclude that 
the observed behaviour of the SQUID system excludes a 
macrorealistic description. To make this conclusion more 
firm, however, we must discuss the assumptions inherent 
in the measurement and analysis scheme further. 
 We do not give the details14–16 of the signal processing 
that must be performed in order to obtain Kexpt, and let it 
suffice to say that this proccessing is plausible, if heavy. 
Thus, from the raw measurement of the power spectrum, 
one must subtract the noise power spectrum of the output 
amplifier, and scale by the frequency response curve  
of the measuring line (which contains filters, amplifiers,  
digitizers and whatnot). While many of these effects are 
independently measurable, it is clearly desirable to be 
able to minimize the number of such subsidiary transfor-

mations of the data. Nevertheless, it is clear that if Q(t) is 
indeed undergoing underdamped oscillations at a fre-
quency , then S() will display a narrow peak near  
with a large area under it. The experimenters find a rela-
tively narrow peak in S() at  /2  10 MHz with a 
width of about 2 MHz. (Note that this is the Rabi  
frequency, and not 10/2.) It is not surprising that under 
certain conditions, it is possible16 to transcribe the  
inequality (8) directly into a condition on S(). 
 Next, let us discuss how well the conditions under 
which the experiment is done permit a true test of the 
macrorealistic inequality. First, the measurements are of 
the weak continuous type, and not the classic projective 
type. They are certianly not of the ideal negative result 
type, but are they nevertheless noninvasive? It seems to 
me that the answer is no, and this seems to be confirmed 
by Palacios-Laloy et al.4. It is reported that as the 
strength of the measurement signal is increased, the Rabi 
oscillations are washed out. Second, it seems to be as-
sumed that measurements of X(t) and Y(t) do not affect 
the noise power spectrum, and that the measured quantity 
X(t)X(t + ) depends only on the delay . Both assump-
tions are plausible and testable via subsidiary experi-
ments on the ensemble. More troublesome is a tacit 
assumption that the signal Q(t) is unaffected because it is 
not time correlated with the noise, and it is not clear how 
to test this assumption. 
 But the biggest question hanging over the experiment 
is whether the two states in which the system lives are 
macroscopically distinct. As noted above, the dipole  
moment change is 104 times ea0, which is indeed large 
compared to atomic and molecular moments. At the same 
time, the change in the number of Cooper pairs, N, as we 
go from the ground to the first excited state of the 
SQUID, is minor10. In both states |0 and |1, N = 0 for 
ng = 1/2. But even the uncertainty N is of order 1: for 
EJ/EC = 50, N is 1.1 and 1.9 for the states |0 and |1  
respectively. It is hard to unambiguously identify a  
macroscopic difference in the character of the states 
themselves. Still, the system studied is quite remarkable, 
and I cannot help but wonder if the founders of the sub-
ject conceived that quantum mechanics would one day be 
applied to such a strange degree of freedom. 

Conclusion 

In summary, we have reviewed the macrorealistic in-
equality and one of the leading experiments that purport 
to test it. One major improvement would be to perform a 
test using negative result measurements, since otherwise 
it is not plausible that a system would show both a viola-
tion of macrorealism and also that measurement does not 
perturb the dynamics of the system. (The two possibilities 
are almost irreconcilable, since it is, so to speak, the  
‘interference’ caused by the observation at t2 that makes 
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the inequality fail for quantal systems.) Precisely such an 
test has recently been claimed in an experiment involving 
Cs atoms17. An atom is prepared in a superposition of hy-
perfine states in the ground state manifold, 
 

 1 (| 4, 4 | 3, 3 ),
2 F FF m F m        (22) 

 
and placed in two overlapping optical lattices, one that is 
sensitive to atoms in an F = 4 state, and the other to the 
F = 3 state. The two lattices coincide to begin with, so the 
atom will seek one of the coincident (deep) minima of the 
potential wells of the optical lattices. The two lattices are 
then dragged with respect to each other, and correlations 
of the position of the atom can be measured by means of  
operations on the spin states. The key points are that the 
measurements are indeed of a negative character, i.e. the 
atom is deduced to be in position B only if it is not found 
in A (if it is found in A that particular run is discarded), 
and that the correlations are measured for position differ-
ences up to 2 m. While this is indeed a large distance on 
the atomic scale, the object whose position is indefinite 
on this scale is itself decidedly microscopic. Thus, while 
the experiment is undoubtedly a feat of skill, whether it 
entails a macroscopic object is open to question. Indeed, 
its disconnectivity18 is less than that of an earlier experi-
ment19 showing diffraction effects with C60 (buckminster-
fullerene) molecules, and neutron interferometry has been 
done with ‘slits’ 10 cm apart. 
 All this once again raises the question of when the 
states participating in a superposition can be regarded as 
macroscopically distinct. This is a vexing question that 
has resisted easy answers. It is clear that the state origi-
nally envisioned by Schrödinger of his hapless cat quali-
fies (Griffiths20 refers to it as a ‘grotesque’ state), but is 
there some numerical measure that one can use to quantify 
grotesqueness? Despite their drawbacks, two of the best 
are still those proposed by Leggett: the disconnectivity18, 
already mentioned, and the ‘extensive difference’9. We 
refer the reader to the cited papers for details. 
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