An example of consistent palaeostress regime resulting in morphometric irregularity in the northwestern part of Noachis Terra, Mars

The Noachis Terra, a vast Martian terrain situated between the Tharsis province to the west and the gigantic impact basin of Hellas to the east in the southern hemisphere of the planet, preserves numerous geomorphic features like wrinkle ridges, lobate scarps, grabens, drainage channels, dunes, etc. Though the morphotectonic features of Mars have been a subject of interest for geologists for the last four decades5–8, little is known about the Noachis Terra5,7. Rendering the geologic evolution of the Terra unexplained till date, we attempt to document a set of morphotectonic features of the Terra in this study and aim to resolve the palaeostress condition that led to its development. The conspicuous E–W trending grabens present in the Middle Noachian Highland unit9 in the western part (26°W, 26°S to 19°W, 32°S) of the Noachis Terra are used in this study. MOLA Digital Terrain Model (DTM) and high resolution optical (HRSC and CTX)10,11 images are used as datasets. Profiles, based on MOLA DTM, are drawn to elucidate the topography/structure, while HRSC and CTX images are used for clear observations of the topographic features12.

Available data are insufficient to constrain the actual dip of the fault planes present in the Martian crust. The scarps on the Martian surface commonly show very shallow dip5 (~9°); however, knowledge on inclination of faults in basalts and other volcanics at the shallow crustal levels6,13,14 and also the comparatively lesser gravity on Mars than the Earth15 led geologists to consider emergent extensional faults on Mars as steeply (60–80°) dipping surfaces9,17,18. Fault plane orientations and slip data aid in the determination of the states of palaeostress responsible for the formation of faults.19,20 Geologists have extended the application of this technique for faults on the Martian surface to unveil the stress conditions that prevailed in areologic past21. In the present work the fault plane orientations and slip directions along the fault planes were analysed using T-Tecto 3.0 (ref. 23) software to understand the palaeostress regime in which the faults were formed.

MOLA DTM reveals a system of sub-parallel grabens (Figure 1a), all of which trend almost E–W. Such a regularity in orientation spread over an area of 140,800 sq km hints to a somewhat consistent internal stress regime responsible for development of faults that limit the grabens9,24. The lengths of the traces of these lineaments vary from ~20 to ~120 km. An unnamed crater (addressed as CR hereafter), to the east of the Sangar crater (24.3°W, 27.5°S) and south of Pabo crater (23.1°W, 26.9°S; Figure 1a) is transected by the northernmost graben (Fm). CR has an almost circular rim, the northeastern part of which is faint possibly due to prolonged weathering and erosion. NE–SW trending wind streaks25 and a seemingly drainage channel trending roughly north–south is present within the northern part of the crater (Figure 1b). Therefore, the crater floor must be covered by sediments which hinder the measurement of elevation of the actual floor of the crater. Low (0.005) depth-to-diameter ratio26 and presence of sharp rim crest at parts, rules out the possibility of considering CR as a volcanic caldera and indicates its impact origin27. Fm is ~93 km long. Profile section reveals two scarps (Figure 1c), the northern one dipping south and the southern one dipping north, bordering the graben, the floor of which shows a drop-down of ~150–200 m from the adjacent ground level along its strike. However, this drop-down is not the actual throw of the faults as the surface must be covered by sediments. The ground level outside CR to the north of Fm graben is lower than (20–50 m along Fm) that to the south of Fm (Figure 1a, c and d). This fact can be attributed to a composite effect of relatively lesser displacement along the northern fault of Fm and a possible difference in the degree of weathering and erosion across the graben as evident from fluvial and aeolian activity seen in the region (Figure 2a). The CR rim shows no visible offset along Fm lineament, as found from high-resolution HRSC image (Figure 1b). Such a condition can only be explained if the concerned faults bordering Fm are dip slip faults (Figure 1d). Profile sections (Figure 2b, c) reveal seven more E–W trending grabens (Fc, Fs, Ft, Fk, Fl, Fm and FN; Figure 1d). Another graben (Fb) to the west of Fm may be a segment of extension of Fm to the west along its strike, as it coincides with Fc (Figure 1a). The graben floors have ~20–170 m drop relative to the ground level outside them. In all the grabens, inclinations of the bordering scarps face each other revealing that the depression is due to relative downward movement of the hanging wall of the bordering normal faults28. Graben Fb is possibly a continuation of graben Fc. The Fb, Fk, Fb and Fm (Figure 1a) may be segments of a single graben, presently discontinuously due to partial obliterations by impact craters and possibly due to buried nature. The regional structure is therefore a series of grabens (Figure 2b, c).

The region is one of the oldest terranes on the Martian crust29 and therefore must have undergone prolonged action of surface geological processes. The study area has a northward regional slope resulting in 500 m drop in elevation from southern to northern extremity (Figure 2b, c). Erosional activity in addition to faulting might have played a role in this large difference in elevation.

A drainage channel appears to have originated from the Pabo crater on the northermost point of the CR rim. This channel runs N–S on the CR floor up to Fm and takes an eastward turn along it and again runs southward outside CR. However, observations using MOLA DTM show that the channel floor to the north of the graben has a southward slope and that on the south has a northward slope, indicating that these are two different channels. The channels postdate Fm, as both terminate at the fracture and are not extended beyond it. Other drainage channels radiate from the flanks of craters (Figure 1a) and some of them have ~SSW to NNE slope. Structural lineaments could have guided these channels. There are no perceptible differences of the ground level across these channels (Figure 2d and e) as well as no offset of other linear features indicating to extensional fracturing without considerable
shear. These channels do not cross-cut any of the E–W trending scars, indicating that the channels and also the lineaments postdate the E–W scars.

For fault-slip analysis in order to understand the palaeostress scenario trends of small segments of the faults along their traces are used to estimate all possible variations in the strike and the corresponding dip directions. Guided by the steepness of the Martian extensional faults, fault-plane dips are considered as 60–80° (cf. ref. 18), except for vertical faults of F_3. In the absence of any offset of linear surface features along the faults and also of any data on displaced marker horizons, the faults are considered as dip-slip faults, i.e. with high values (80–90°) of rakes for the slip-lines. The faults and the corresponding slip directions are projected stereographically (Figure 2f) using T-Tecto 3.0. The slip vector analysis (cf. refs 18, 22 and 23) of the set of these faults bounding the grabens reveals a subvertical maximum principal stress (σ_1), and a N–S trending sub-horizontal minimum principal stress (σ_3) direction (Figure 2f).

The region is situated between two important tectonic provinces, the volcano-tectonic Tharsis province in the west and the gigantic impact basin of Hellas Planitia in the east. Tharsis has a long history of tectonic evolution spanning between Early Noachian and Amazonian periods30, whereas age of the Hellas impact is Early Noachian31. The centre of another large impact basin, the Argyre Planitia, of early (?) to Mid Noachian age31 is ~1400 km SW of the area. The grabens and faults studied here are superposed by large impact craters (Figure 1c), which must postdate the grabens. It is known that large impacts happened in the early history of the planet31 and therefore, it is evident that the grabens were formed in the early times of the planet Mars. Grabens of similar trends are present in the Thaumasia Planum3,22, ~2000 km away, within the Tharsis province, which do not continue to the present study area. Therefore, though of similar trends, grabens of these two regions cannot be directly correlated. Faults with similar geometry are absent in the vicinities of both Argyre and Hellas basins, opposing any possible correlation between the origin of the present grabens and the impact events. Tharsis tectonism and Hellas impact deformed the crust on a global scale24,30 and their roles in the extensional deformation of the western part of Noachis Terra cannot be fully ruled out, although any direct link to establish the relation is still undiscovered.

There are differing opinions on graben formation on the Martian surface; some of them advocate emplacement of dykes33 and some favour tectonic extension34. The grabens in this area are smaller in terms of width and depth compared to large rift systems of Mars. Wilson and Head24 have suggested ranges of values of width and depths of grabens that are generated by dyke emplacements. The depths and widths of the presently studied grabens (Table 1) are well within this specified range. Korteniemi et al.33 have suggested

Figure 1. a. Grabens shown (F_A, F_B, F_C, F_D, F_E, F_F, F_G, F_H, F_I, F_J, F_K, F_L, and F_M) on MOLA DTM of the area of study. P_{cr}-P_{cr} and Q_{cr}-Q_{cr} are section-lines (profiles shown (c)) across the F_A fracture that intersects the unnamed crater (CR). $T-Z$ is the line of section used for deriving the topographic profile (in (h)) of the area avoiding the craters. On the $T-Z$ line U, V, W, X, Y are points where the section line is bent. R_U-R_V and S_U-S_V are the section lines across two N–S trending channels. Also note the radial pattern of channels emerging from the flank of slope of a large crater. b. HRSC image (H9319_0000_ND3) showing absence of any offset of the rim of CR along the graben (F_A). c. Profile sections across the F_A graben. See (a) for the section-lines (P_{cr}-P_{cr} and Q_{cr}-Q_{cr}). d. Schematic representation of the structure across the limiting scarps of the F_A graben. Graben width and depth are given in Table 1.
that dykes extending from north and west of Hellas basin to the Argyre Planitia are present beneath the Noachis Terra. Therefore, available information and the data generated on morphology of the present grabens indicate emplacement of dykes generating subvertical principal compressive stress that has caused subsidence along steeply dipping normal faults. To summarize, the area experienced normal faulting under a stress regime consisting of subvertical maximum compressive stress and N–S trending maximum subhorizontal extension resulting in a series of E–W trending grabens. The palaeostress regime cannot be linked either to Tharsis tectonism or to the Hellas and Argyre impacts. However, emplacement of dykes generating a vertical maximum principal stress and corresponding horizontal extension can be envisaged for formation of the normal fault-bound grabens.

Highly potassic melagranite of Bintang Batholith, Main Range Granite, Peninsular Malaysia

For decades, the Main Range Granite Province of Peninsular Malaysia has been regarded to comprise exclusively of S-type granites\(^1\) (T. C. Liew, unpublished), which have been taken as the world standard for collisional S-type granite\(^2\). The Main Range Granite Province is believed to have formed during Triassic\(^3\) continental collision between Sibumasu and Indochina\(^4\) blocks subsequent to the closure of Palaeo-Tethys Ocean in Early Permian. However, recently Ghani and co-workers\(^5,6\) have found that the province also contains granites with I-type characteristics such as absence of Al-rich minerals such as sillimanite, cordierite, primary wedge titanite and pale green amphibole, occurrence of mafic, hornblende-clino-pyroxene-orthopyroxene-bearing enclaves and increasing peraluminosity towards the most differentiated rocks.

The Malaysian Granite Province is primarily made up of two major batholiths, the Main Range batholith and the Bintang batholith (Figure 1). The Granite Province can be divided into four main facies: (i) biotite granite, (ii) amphibole-bearing granite, (iii) subvolcanic and volcanic ± dacite and orthopyroxene rhyodacite, and (iv) microgranite and megacrystic granite associated with aplopegmatite\(^6\). Biotite granites are present in both batholiths, but amphibole-bearing granites are more common in Bintang batholith. I-type character of the Main Range Granite Province is mainly contributed by the amphibole-bearing granite. Our recent and ongoing study on the amphibole-bearing granite in Bintang batholith revealed some interesting petrographical and geochemical features present in the province, as reported in this paper.

The Bintang batholith is located in the northern part of the Main Range Granite Province, forms a N–S elongate-shaped...