Effect of nano-SiO$_2$ particles on fracture properties of concrete composite containing fly ash

Peng Zhang1,*, Xiao-Bing Dai2, Ji-Xiang Gao2 and Peng Wang2

1Open Laboratory of Water Conservancy and Science of Key Disciplines in Henan Province, and 2School of Water Conservancy and Environment Engineering, Zhengzhou University, Zhengzhou 450001, China

A parametric experimental study has been conducted to investigate the effect of nano-SiO$_2$ particles on fracture properties of concrete composite containing fly ash. Five different nano-SiO$_2$ contents were used for this study. By means of three-point bending method, the fracture parameters of the effective crack length, initial fracture toughness, unstable fracture toughness, fracture energy, critical crack opening displacement, maximum crack opening displacement and maximum mid-span deflection of the beam specimen were measured. The results reveal that the addition of lower SiO$_2$ content (<5%) nano-particles may help improve the fracture properties of concrete composite containing fly ash. Nano-SiO$_2$ has a significant effect on the fracture relational curves of the three-point bending beam specimen. The fracture parameters increase gradually and the fracture relational curves become thicker as the nano-SiO$_2$ content increases from 0\% to 5\%. However, the fracture parameters begin to decrease and the curves become thinner when the nano-SiO$_2$ content exceeds 5\%. These variation rules of fracture parameters and fracture relational curves indicate that nano-SiO$_2$ contributes significantly to the improvement of fracture properties of concrete composite containing fly ash only when its content does not exceed 5\%.

Keywords: Three-point bending method, fracture properties, fly ash concrete, nano-SiO$_2$.

Nanotechnology can be considered as the latest field of science and technology. Because nanotechnology has great market potential and economic impact, the need for research and exploration in this field and of its applications has been growing significantly during the last few decades1. Nanotechnology is also engineering at the nanoscale to produce materials with unique properties that cannot be achieved using traditional materials2. Nanomaterials have been considered as the most promising materials in the 21st century by scientists. Nanoparticles have been gaining increasing attention and are being applied in many fields to fabricate new materials with novel functions due to their unique physical and chemical properties. The extremely high specific surface area is one of the most important characteristics of nanoparticles because it facilitates more interphase in a composite and thereby, a strong interaction between the fillers and the matrix even at a rather low nano-filler loading3. For heterogeneous composites such as concrete composites, addition of nanoparticles makes them an ideal candidate for the application of nanotechnology. Due to the nano-effects of nano-particles such as surface effect, quantum size effect, small size effect and macroscopic quantum tunnelling effect, there is a global interest in the investigation of the influence of nanoparticles on concrete composites. Although the high cost of nanoparticles may prevent their widespread use, they are more advantageous than other admixtures. In recent years, with the reduction of manufacturing cost of nano-materials, many researchers have carried out work on the properties of concrete composites containing nanoparticles.

Woo et al.4 studied the barrier characteristics of nano-clay composites that were applied onto concrete as a protective coating. The water permeability resistant behaviour and microstructure of concrete with nano-SiO$_2$ was also experimentally studied5,6. Researchers7–10 have also studied the improvement in compressive and flexural strength, abrasion resistance, chloride permeability and flexural fatigue performance of concrete containing nanoparticles. Bahadori and Hosseini11 studied the effects of replacing cement with colloidal amorphous silica nanoparticles on the physical and mechanical properties, durability and microstructure of concrete. Givi et al.12,13 studied the effects of SiO$_2$ nanoparticles on both mechanical and physical properties of concrete, and the size effects of SiO$_2$ nanoparticles on compressive, flexural and tensile strength of binary blended concrete. Nazari and Riahi14 studied the percentage, rate and coefficient of water absorption, workability and setting time of binary blended concrete with partial replacement of cement by TiO$_2$ nanoparticles. The results indicate that the addition of nanoparticles to concrete composites improves their mechanical properties and durability.

Nanoparticles can also help improve the properties of concrete composites containing other pozzolanic materials.

*For correspondence. (e-mail: zhangpeng8008@gmail.com)
and fibres. The effects of nano-SiO$_2$ on pore size distribution, rate of hydration, setting time and strength development of concrete with high-volume fly ash and slag have also been studied$^{13-17}$. Heidari and Tavakoli18 studied the compressive strength and water absorption of concrete composite using nano-SiO$_2$ and waste ground ceramic simultaneously. Najigivi et al.19 studied the effects of SiO$_2$ nanoparticles as additives with two different sizes (15 and 80 nm) on water absorption of rice husk ash (RHA) blended concrete. The effects of nano-silica and different fibres on the mechanical and rheological properties and durability of self-compacting concrete were studied and the compressive strength of self-compacting concrete with fibres consisting of nano-SiO$_2$ was estimated using ultrasonic pulse velocity$^{20-22}$. The results show that there are good prospects of concrete composite containing nanoparticles and other pozzolanic materials and fibres simultaneously.

Fracture properties are extremely important for the safety and durability of structures constructed with concrete composite. The improved pore structure of concrete composite by applying nano-SiO$_2$ particles causes densification of paste-aggregate transition zone, which in turn affects the fracture properties. Hence, it is necessary to study the effect of nano-SiO$_2$ particles on fracture properties of concrete composite containing fly ash. However, little information is available regarding this. Zhang et al.23,24 studied the notch sensitivity of fracture properties of concrete containing nano-SiO$_2$ particles and fly ash, and the effect of steel fibre on fracture properties of high performance concrete containing nano-SiO$_2$ particles and fly ash. The results indicate that the relative notch depth of the notched specimens has a significant effect on fracture parameters and the fracture relational curves of concrete containing nano-SiO$_2$ and fly ash. Also, the addition of appropriate steel fibre content helps improve the fracture properties of high performance concrete containing nano-SiO$_2$ and fly ash. Therefore, we conducted the present experimental study and measured the fracture toughness, fracture energy, mid-span deflection (δ), crack mouth opening displacement (CMOD) and crack tip opening displacement (CTOD) of the notched beam specimens of concrete composite containing nano-SiO$_2$ particles to analyse the effect of nano-SiO$_2$ particles on fracture properties of concrete composite containing fly ash.

Materials and experimental procedure

Raw materials

The cement used was Ordinary Portland cement (Class 42.5R; manufactured by Tianrui Cement Co.) for which the chemical and physical properties are presented in Table 1. Grade I fly ash was used to make the concrete for which the chemical properties are also presented in Table 1. In this experimental study, amorphous nano-SiO$_2$ (manufactured by Wanjing New Material Co, Ltd, Hangzhou city, China) with solid content of more than 99% was used. Physical properties of the nanoparticles are presented in Table 2. Nano-SiO$_2$ content in different series was 1, 3, 5, 7 and 9 wt%. The quantities of fly ash and nano-SiO$_2$ are expressed as percentages of mass of the cement content. Coarse aggregate with a maximum size of 20 mm and fine aggregate with a 2.76 fineness modulus were used. The specific gravity and silt content of the coarse and fine aggregates were 2.74% and 0.6%, as well as 2.63% and 0.8% respectively. The values of specific gravity of the aggregates in this study are based on saturated surface dry condition. A high-range water reducing agent with commercial name polycarboxylate HJSX-A was used to adjust the workability of the concrete mixture. The performance indices of the high-range water reducing agent are presented in Table 3. The agent was made of many polymer organic compounds, most of which belong to poly carboxylic acid salt. It has great reducing properties with only a small dosage. Besides, the use of this kind of reducing agent in concrete can reduce the slump loss of the concrete. Mix proportions of the concrete composite are given in Table 4. The water–binder ratio (0.32) of each mix proportion remained unchanged in this study.

Preparation of specimens

A series of notched beam specimens with size 100 × 100 × 515 mm were prepared to determine the fracture properties. The beam specimen was sawed from the span centre of the lower surface to produce a pre-cutting crack, with depth of 40 mm. The shape and size of the beam specimen are provided in Figure 1. A photograph of the beam specimen with pre-cutting crack is shown in Figure 2. In order to distribute nano-SiO$_2$ uniformly, a forced mixing machine was used. The mixing procedure, which

<table>
<thead>
<tr>
<th>Progress</th>
<th>Cement</th>
<th>Fly ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical composition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>20.85</td>
<td>51.50</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>5.32</td>
<td>18.46</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>2.69</td>
<td>6.71</td>
</tr>
<tr>
<td>CaO</td>
<td>62.97</td>
<td>8.58</td>
</tr>
<tr>
<td>MgO</td>
<td>3.66</td>
<td>3.93</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>0.15</td>
<td>2.52</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>0.62</td>
<td>1.85</td>
</tr>
<tr>
<td>SO$_3$</td>
<td>2.48</td>
<td>0.21</td>
</tr>
<tr>
<td>Physical properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific gravity</td>
<td>3.11</td>
<td>2.16</td>
</tr>
<tr>
<td>Specific surface (cm2/g)</td>
<td>3287</td>
<td>2470</td>
</tr>
</tbody>
</table>

Table 1. Properties of cement and fly ash
Table 2. Physical properties of nano-SiO$_2$

<table>
<thead>
<tr>
<th>Average particle size (nm)</th>
<th>SiO$_2$ content (%)</th>
<th>Specific surface area (m2/g)</th>
<th>Apparent density (g/cm3)</th>
<th>pH value</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>99.5</td>
<td>200 ± 10</td>
<td>0.055</td>
<td>5–7</td>
</tr>
</tbody>
</table>

Table 3. Properties of high-range water reducing agent

<table>
<thead>
<tr>
<th>Solid content (%)</th>
<th>Total alkali content (%)</th>
<th>Fluidity of cement paste (mm)</th>
<th>Density (g/cm3)</th>
<th>Content of Cl (%)</th>
<th>pH value</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>1.2</td>
<td>260</td>
<td>1.052</td>
<td>0.078</td>
<td>4.32</td>
</tr>
</tbody>
</table>

Table 4. Mix proportions of concrete composite

<table>
<thead>
<tr>
<th>Mix no.</th>
<th>Cement (kg/m3)</th>
<th>Fly ash (%)</th>
<th>Nano-SiO$_2$ (%)</th>
<th>Fine aggregate (kg/m3)</th>
<th>Coarse aggregate (kg/m3)</th>
<th>Water (kg/m3)</th>
<th>Water reducing agent (kg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>419.9</td>
<td>15</td>
<td>0</td>
<td>647</td>
<td>1151</td>
<td>158</td>
<td>4.94</td>
</tr>
<tr>
<td>2</td>
<td>414.96</td>
<td>15</td>
<td>1</td>
<td>647</td>
<td>1151</td>
<td>158</td>
<td>4.94</td>
</tr>
<tr>
<td>3</td>
<td>405.08</td>
<td>15</td>
<td>3</td>
<td>647</td>
<td>1151</td>
<td>158</td>
<td>4.94</td>
</tr>
<tr>
<td>4</td>
<td>395.2</td>
<td>15</td>
<td>5</td>
<td>647</td>
<td>1151</td>
<td>158</td>
<td>4.94</td>
</tr>
<tr>
<td>5</td>
<td>385.32</td>
<td>15</td>
<td>7</td>
<td>647</td>
<td>1151</td>
<td>158</td>
<td>4.94</td>
</tr>
<tr>
<td>6</td>
<td>375.44</td>
<td>15</td>
<td>9</td>
<td>647</td>
<td>1151</td>
<td>158</td>
<td>4.94</td>
</tr>
</tbody>
</table>

Experimental method

In this study, three-point bending beam method was employed to measure the fracture parameters, which is an appropriate fracture testing method recommended by the Committee on Fracture Mechanics of Concrete of the International Union of Laboratories and Experts in
Construction Materials, Systems and Structures25. The experiment was carried out on a hydraulic pressure testing machine, whose measure range of the load transducer is 0–30 kN. CMOD and CTOD were measured by clamp-type extended instruments. CMOD can be defined as the increase in the crack width of the pre-cutting crack mouth during the course of loading and CTOD can be defined as the increase in the crack length of the pre-cutting crack during the course of loading. The mid-span deflection (δ) of the beam specimen was measured using a displacement meter fixed on one side of the specimen by an angle bracket. During the course of testing, the loading was kept continual and consistent, and the loading rate was reduced slightly when the specimen was approaching failure. The relational curves between the vertical load and the mid-span deflection ($P_v - \delta$) crack mouth opening displacement ($P_v - \text{CMOD}$) and crack tip opening displacement ($P_v - \text{CTOD}$) were obtained respectively, from the X–Y dynamic function recorder. The testing apparatus of fracture test is presented in Figure 3.

Determination of fracture parameters

In this study, the fracture properties of concrete composite containing nano-SiO$_2$ were evaluated by the double-K fracture parameters (initial fracture toughness $K_{\text{IC}}^{\text{ini}}$ and unstable fracture toughness $K_{\text{IC}}^{\text{un}}$26), and fracture energy G_f. The propagation length of the crack is needed for the calculation of $K_{\text{IC}}^{\text{ini}}$ and $K_{\text{IC}}^{\text{un}}$. The higher $K_{\text{IC}}^{\text{ini}}$ and $K_{\text{IC}}^{\text{un}}$ values indicate that the concrete is more resistant to crack expansion and has better fracture properties. On the contrary, the concrete composite exhibits poor fracture properties with lower values of $K_{\text{IC}}^{\text{ini}}$ and $K_{\text{IC}}^{\text{un}}$. The actual length of the crack is more than the depth of the pre-cutting crack of the specimen because there is a stage of steady expansion before unstable fracture occurs, and the propagation length of the crack is the difference between the actual length of the crack and depth of the pre-cutting crack of the specimen. However, it is difficult to accurately measure the actual length of the crack. Therefore, the effective crack length of the three-point bending beam specimen is generally used to calculate $K_{\text{IC}}^{\text{ini}}$ and $K_{\text{IC}}^{\text{un}}$. The effective crack length can be calculated as follows27

$$a_c = \frac{2}{\pi} H \times \arctan \left(\frac{EB}{32.6P_{\text{v, peak}}} \text{CMOD}_c - 0.1135 \right),$$

(1)

where a_c is the effective crack length of the pre-cutting crack, $P_{\text{v, peak}}$ the peak vertical load (kN), CMOD$_c$ the critical crack mouth opening displacement (m), E the elastic modulus of the concrete composite (MPa), H the height of the beam specimen (m) and B is the width of the beam specimen (m).

With the measured initial cracking load and the depth of the pre-cutting crack of the three-point bending beam specimen, the initial fracture toughness of concrete composite containing nano-SiO$_2$ can be calculated as follows28

$$K_{\text{IC}}^{\text{ini}} = \frac{3P_{\text{v, ini}} S \sqrt{a_0}}{2BH^2} f\left(\frac{a_0}{H} \right),$$

(2)

where $K_{\text{IC}}^{\text{ini}}$ is the initial fracture toughness (kN/m$^{3/2}$), $P_{\text{v, ini}}$ the initial cracking load (kN), S the span length of the beam specimen (m), H the height of the beam specimen (m), B the width of the beam specimen (m) and a_0 is the depth of the pre-cutting crack of the three-point bending beam specimen (m). $f(a_0/H)$ is a function relevant to a_0/H, which can be expressed as follows

$$f\left(\frac{a_0}{H} \right) = \frac{1.99 - \frac{a_0}{H}}{1 - \frac{a_0}{H}}, \quad \frac{2.15 - 3.93 \frac{a_0}{H} + 2.7 \left(\frac{a_0}{H} \right)^2}{1 + 2 \frac{a_0}{H} \left(1 - \frac{a_0}{H} \right)^{1.5} \left(\frac{a_0}{H} \right)^2}.$$

(3)

With the measured peak vertical load and the effective crack length of the three-point bending beam specimen, the unstable fracture toughness of concrete composite containing nano-SiO$_2$ can be calculated as follows28

$$K_{\text{IC}}^{\text{un}} = \frac{3P_{\text{v, max}} S \sqrt{a_c}}{2BH^2} f\left(\frac{a_c}{H} \right),$$

(4)

where $K_{\text{IC}}^{\text{un}}$ is the unstable fracture toughness (kN/m$^{3/2}$), $P_{\text{v, max}}$ the peak vertical load (kN), S the span length of the beam specimen (m), H the height of the beam specimen (m), B the width of the beam specimen (m), a_c is the effective crack length of the three-point bending beam.
specimen (m). \(f(a_c/H) \) is a function relevant to \(a_c/H \) which can be expressed as follows:

\[
 f \left(\frac{a_c}{H} \right) = 1.99 - \frac{a_c}{H} \left[1 - \frac{a_c}{H} \right] \left[2.15 - 3.93 \frac{a_c}{H} + 2.7 \left(\frac{a_c}{H} \right)^2 \right] \left(1 + 2 \frac{a_c}{H} \right)^{1.5}
\]

(5)

The fracture energy results from integration of the load-displacement curve per unit of the fractured surface of the specimen\(^{29}\). With the measured ultimate mid-span deflection and the relational curve of \(P_N - \delta \) of the three-point bending beam specimen, the fracture energy of concrete composite containing nano-SiO\(_2\) can be calculated as follows\(^{30}\):

\[
 G_f = \frac{1}{A_{bg}}\left[W_0 + (m_1 + 2m_2)g\delta_{max} \right],
\]

(6)

\[
 A_{bg} = B(H - a_0),
\]

(7)

where \(G_f \) is the fracture energy (N/m), \(A_{bg} \) the area of the fracture ligament of the specimen (m\(^2\)), \(H \) the height of the beam specimen (m), \(B \) the width of the beam specimen (m), \(a_0 \) the depth of the notched crack (m), \(g \) the gravitational acceleration (g = 9.8 m/s\(^2\)), \(m_1 \) the weight of the specimen between the two supports (kg); \(m_2 \) the additive weight of the loading facilities (kg); \(\delta_{max} \) the maximum mid-span deflection of the beam specimen (m) and \(W_0 \) is the area above the axis of \(\delta \) and under the relational curve of \(P_N - \delta \) (Nm; Figure 4). There are six specimens for each proportion, and the average of the six values of calculation is taken as the final result.

Results and discussion

Effect of nano-SiO\(_2\) on fracture toughness

The results of the effective crack length \((a_c) \) of the three-point bending beam specimens of nano-SiO\(_2\) reinforced concrete composite containing 15% fly ash, with the curing period of 28 days, are shown in Figure 5. The results show that \(a_c \) increases with SiO\(_2\) nanoparticles up to 5% replacement of the cement and then it decreases, although 9% replacement of the cement is still higher than that of the concrete composite only containing 15% fly ash. Compared with the concrete composites without nano-SiO\(_2\), the increase of \(a_c \) is determined as 7.2% for the concrete composite with 5% nano-SiO\(_2\).

Figure 6a and b shows the variation rules of initial fracture toughness \((K_{IC}^{ini}) \) and unstable fracture toughness \((K_{IC}^{m}) \) of concrete composite with 15% fly ash at 28 days curing period with increase in nano-SiO\(_2\) content respectively. As expected, in general, the concrete composite specimens made with SiO\(_2\) nanoparticles show higher \(K_{IC}^{ini} \) and \(K_{IC}^{m} \) than those made without SiO\(_2\) nanoparticles. Both \(K_{IC}^{ini} \) and \(K_{IC}^{m} \) increase gradually with the increase in nano-SiO\(_2\) content, when it is below 5%. However, just like \(a_c \) of the three-point bending beam specimens, \(K_{IC}^{ini} \) and \(K_{IC}^{m} \) begin to decrease with the continued increase of nano-SiO\(_2\) content when it exceeds 5%. The variations of \(a_c \), \(K_{IC}^{ini} \) and \(K_{IC}^{m} \) indicate that lower content of SiO\(_2\) nanoparticles helps improve the fracture properties of the concrete composite containing fly ash compared to higher SiO\(_2\) nanoparticles content. This may be due to the fact that the quantity of SiO\(_2\) nanoparticles present in the mix is higher than the amount required to combine with the liberated lime during the process of hydration, thus leading to excess silica leaching out and causing a deficiency in strength as it replaces part of the
cementitious material but does not contribute to its strength.\[^{11}\]

Effect of nano-SiO\textsubscript{2} on fracture energy

The variations of G_F of nano-SiO\textsubscript{2} reinforced concrete composite containing 15% fly ash with 1%, 3%, 5%, 7% and 9% cement replacement with nano-SiO\textsubscript{2} at 28 days curing period are illustrated in Figure 7. From the results, it can be seen that all the concrete composites containing nano-SiO\textsubscript{2} have higher G_F than the concrete composite without nanoparticles. A considerable increase in G_F of the concrete composite was observed by increasing the nano-SiO\textsubscript{2} content, when it is not beyond 5%. Compared with the control mix without nanoparticles, the increase in G_F was determined as 24.3%, 38.1% and 67.3% for 1%, 3% and 5% cement replacement with nano-SiO\textsubscript{2} respectively. However, as the nano-SiO\textsubscript{2} content increases continuously, further decrease in G_F is observed. The fracture energy G_F of concrete composite is a basic material characteristic, representing the energy necessary to create a unit area of fracture surface. The higher G_F indicates that more energy will be consumed to make the concrete composite fracture and the concrete composite has better fracture properties. On the contrary, the concrete composite shows poor fracture properties with lower G_F.

Figure 8 presents the typical complete curves of $P_\text{V} - \delta$ of the three-point bending beam specimens of concrete composite containing 15% fly ash with different nano-SiO\textsubscript{2} contents, as well as a curve obtained for the concrete composite containing 15% fly ash without nano-SiO\textsubscript{2}. From the figure, it can be seen that the relational curve of $P_\text{V} - \delta$ becomes thicker, the nonlinear stage of the curve becomes longer and the descent stage of the curve is more gradual when the nano-SiO\textsubscript{2} content increases from 0% to 5%, while the relational curve becomes thinner, when the nano-SiO\textsubscript{2} content increases from 5% to 9%. Figure 9 shows the variation of the maximum mid-span deflection (δ_{max}) of the three-point bending beam specimens with increase in nano-SiO\textsubscript{2} content. As can be seen from the figure, in general, the maximum mid-span deflection becomes larger when the...
nano-SiO₂ content increases from 0% to 5%, while it becomes smaller when the nano-SiO₂ content increases from 5% to 9%. For concrete composite, the thicker and longer relational curve of $P_V - \delta$ indicates that the three-point bending beam specimen has better fracture properties. Accordingly, the variation rules of the relational curves of $P_V - \delta$ and the maximum mid-span deflection indicate that the resistance to crack propagation of concrete composite containing fly ash gradually increases with the increase in nano-SiO₂ content as the fracture properties are seen to improve with nano-SiO₂ content not beyond 5%.

Few studies have been conducted on fracture properties of cementitious composite reinforced by SiO₂ nanoparticles and some possible reasons have been represented to show the increment of G_f. When a small amount of the nanoparticles is uniformly dispersed in the cement paste, the nanoparticles act as a nucleus to tightly bind with cement hydrate and further promote cement hydration due to their high activity, which is favourable for the strength of cement mortar. Besides, the nanoparticles among the hydrate products will prevent crystals from growing which are not favourable for the strength of cement paste. The nanoparticles fill the cement pores, thus increasing its strength. Nano-SiO₂ can contribute to the hydration process to generate more C-S-H through reaction with Ca(OH)$_2$ (ref. 12).

Effect of nano-SiO₂ on CMOD and CTOD

The different relational curves of $P_V - \text{CMOD}$ and $P_V - \text{CTOD}$ of the three-point bending beam specimens of the concrete composites reinforced with SiO₂ nanoparticles at 28 days curing period with the increase of nano-SiO₂ content are given in Figure 10a and b respectively. From the figure, it can be seen that the effect of nano-SiO₂ content on the curves is significant; and both types of curves become thicker with the increase in nano-SiO₂ content, when it increases from 0% to 5%, while the curves become thinner when nano-SiO₂ content exceeds 5%. Figure 11a and b shows the variations of the critical crack opening displacement (CMOD$_c$ and CTOD$_c$) and the maximum crack opening displacement (CMOD$_\text{max}$ and CTOD$_\text{max}$) of concrete composites containing fly ash for different nano-SiO₂ contents respectively. CMOD$_c$ can be defined as the crack mouth opening displacement when the vertical load reaches the maximum value. Similarly, CTOD$_c$ can be defined as the crack tip opening displacement when the vertical load reaches the maximum value. CMOD$_\text{max}$ can be defined as the maximum crack mouth opening displacement when the specimen is destroyed. Similarly, CTOD$_\text{max}$ can be defined as the maximum crack tip opening displacement when the specimen is destroyed. It can be generally seen that the effect of SiO₂ nanoparticles on the crack opening displacement is significant, CMOD and CTOD increase gradually as the nano-SiO₂ content increases from 0% to 5%, while they begin to decrease when the nano-SiO₂ content exceeds 5%. Compared with the concrete composite containing no SiO₂ nanoparticles, the increase of CMOD$_c$ and CTOD$_c$ was determined as 45% and 44.3% respectively, and the increase of CMOD$_\text{max}$ and CTOD$_\text{max}$ was estimated as 69.9% and 60.7% respectively, for concrete composite with 5% replacement of cement. From the results of CMOD and CTOD, it can also be seen that the contribution of

Figure 9. Effect of nano-SiO₂ content on maximum mid-span deflection.

Figure 10. $P_V - \text{CMOD}$ (a) and $P_V - \text{CTOD}$ (b) curves for different nano-SiO₂ contents.
SiO$_2$ nanoparticles to the fracture properties of concrete composite containing fly ash is significant only when the nano-SiO$_2$ content does not exceed 5%.

The reason why the addition of nano-SiO$_2$ improves the fracture properties of concrete composites containing fly ash may be closely related to the specific nanometre effect of the nano-SiO$_2$ particles. These particles possess high specific surface area and can react with Ca(OH)$_2$ to produce C-S-H condensed gel. Hence, during a pozzolanic reaction, the number and size of crystals of Ca(OH)$_2$ are reduced and C-S-H gel, produced by the pozzolanic reaction, forms a denser transition zone11. The extremely fine particle size of nano-SiO$_2$ may have accelerated cement and fly ash hydration by providing more nucleation sites for precipitation of cement hydration products in the fly ash concrete composites. In addition to the nucleation effect, nano-SiO$_2$ may have acted as reactive filler which reduces bleeding and increases packing density of solid materials by occupying space between cement and fly ash particles17. With the presence of nanoparticles and fly ash, the pozzolanic reaction will be more complete inside the concrete composites, and the rate of the pozzolanic reaction will be higher. Thus the change of the pozzolanic reaction with the addition of nanoparticles helps improve the fracture properties of the concrete composites. Furthermore, the addition of nano-SiO$_2$ makes the concrete composite denser and improves its bearing capacity; there is a decrease in the size and number of microcracks inside the concrete composite. The particles of nano-SiO$_2$ can form a special network structure to prevent the microcracks expanding. Therefore, the fracture properties of concrete composites can be improved.

Conclusions

This article reported experimental results of fracture property studies conducted on nano-SiO$_2$ reinforced concrete composite containing fly ash. SiO$_2$ nanoparticles help significantly improve fracture parameters of K_{IC}, G_V, δ_{max}, CMOD$_{max}$, CTOD$_{max}$, CMOD$_{mass}$ and CTOD$_{mass}$ of concrete composite containing fly ash. The results also showed that nano-SiO$_2$ has an effect on the relational curves of P_V – δ, P_V – CMOD and P_V – CTOD of the three-point bending beam specimen. When the nano-SiO$_2$ content increased from 0% to 5%, the fracture parameters increased gradually and the fracture relational curves became thicker with the increase in nano-SiO$_2$ content. However the fracture parameters began to decrease and the curves became thinner when nano-SiO$_2$ content exceeded 5%. The variation rules of fracture parameters and fracture relational curves indicate that the contribution of nano-SiO$_2$ to the improvement of fracture properties of concrete composite containing fly ash is significant only when the nano-SiO$_2$ content does not exceed 5%.

RESEARCH ARTICLES

ACKNOWLEDGEMENTS. We thank the National Natural Science Foundation of China (51208472) and Open Laboratory of Water Conservancy and Science of Key Disciplines in Henan Province, Zhengzhou University for financial support.

Received 21 June 2014; revised accepted 14 March 2015