Preparation of polysilicon from rice-husk

The importance of crystalline silicon which is used worldwide for 90% of photovoltaic systems was presented recently. The conventional Siemens process to produce polysilicon involves carbo-thermic reduction of SiO$_2$ ($T>2000^\circ$C) followed by chlorination, fractional distillation and pyrolysis of trichlorosilane SiHCl$_3$ (TCS). As this process is energy-intensive, efforts have been made to develop alternative lower energy processes. Growth of single crystals from polysilicon by the Czochralski (CZ) technique is also slow and energy intensive. It is important to reduce the total input energy to decrease the ‘energy payback time’ (EPT) of photovoltaic systems. The cell conversion efficiencies are determined by the imported high purity Mg. Hunt showed (Figure 1) that there were at least 20 possible metals for which the reduction reaction of silica to silicon is thermodynamically feasible. These include Li, Be, Ca, Mg, Sr, Ba, Sc, Y, Ti, Hf, Al, Ga, In, Ce and Lu. Of these Sc, Hf, Ce and Lu are expensive rare-earths while the cost factor rules out Li, Be, Ga and In. Acharya et al. used Mg reduction to produce silicon powder but the highly exothermic reaction is difficult to control and the imported high purity Mg was more expensive than Si.

In our work the rice-husk was first pyrolysed in air at ~500°C with constant stirring such that the carbonaceous part (mainly lignin) was burnt off as oxides of carbon. This resulted in ‘white ash’ of grain size ~5–10 μm. This was subjected to repeated leaching in HCl and washing in deionized water to remove soluble impurities. The principal impurities after leaching were B, P, Ca and Mg.

A second source studied was quartzite rock obtained from Purulia which was broken up and pulverized to produce fine powder with a particle size distribution between 5 and 25 μm and a maximum size of 12 μm. The impurities in the fine powder were determined by atomic absorption spectroscopy. Results indicated that Fe, Cr and Ni were the most prominent impurities at >2 ppm level. These are undesirable because they give rise to mid-gap recombination centres in Si. Interestingly the quality of the silica from the two sources could be differentiated on the basis of colour, rice-husk silica being sparkling white while the quartzite silica had a brownish tinge. Due to higher impurity content in silica from quartzite, this material was not used for further processing.

Initially using the Mg reduction process small silicon ingots prepared by Bose et al. were found to be n-type due to excess P and had an electron concentration of $3 \times 10^{17}/\text{cm}^3$ with electron mobility of $210 \text{ cm}^2/\text{V.s}$. The principal impurities detected by mass spectrometry for P, C, B and Al were between 80 and 10 ppm (Table 2).

However from cost and availability considerations alumino-thermic reduction of SiO$_2$ appeared to be more favourable using commercial grade Al from an Indian source. This reduction process for quartzite sand was reported by Dietl et al. The free energy diagram for alumino-thermic reduction of SiO$_2$ is shown in Figure 1. The exothermic reaction is given by

$$3\text{SiO}_2 + 4\text{Al} \rightarrow 2\text{Al}_2\text{O}_3 + 3\text{Si}.$$

Reduction was conducted in a pit furnace in a nitrogen atmosphere (Figure 2). The white ash was introduced into the

Table 1. Composition of white ash (silica)

<table>
<thead>
<tr>
<th>Compound</th>
<th>SiO$_2$</th>
<th>K$_2$O</th>
<th>Na$_2$O</th>
<th>MgO</th>
<th>P$_2$O$_5$</th>
<th>CaO</th>
<th>SO$_3$</th>
<th>Cl</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage</td>
<td>86.9–96.3</td>
<td>0.58–2.5</td>
<td>0.175</td>
<td>0.12–1.96</td>
<td>0.2–2.85</td>
<td>0.2–1.5</td>
<td>0.1–1.13</td>
<td>tr–0.42</td>
<td>tr–0.56</td>
</tr>
</tbody>
</table>

tr, Trace.

Table 2. Mass spectrometric analysis of Mg-reduced Si from rice-husk

<table>
<thead>
<tr>
<th>Element</th>
<th>B</th>
<th>C</th>
<th>Na</th>
<th>Mg</th>
<th>Al</th>
<th>P</th>
<th>Ca</th>
<th>Ti</th>
<th>Cr</th>
<th>Mn</th>
<th>Fe</th>
<th>Cu</th>
<th>K</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conc. (ppm)</td>
<td>10</td>
<td>20</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>78</td>
<td>2.3</td>
<td>nd</td>
<td>1</td>
<td>1.8</td>
<td>nd</td>
<td>7.9</td>
<td>1</td>
<td>1.3%</td>
</tr>
</tbody>
</table>

nd, Not detected.
Al–Al$_2$S$_3$–SiO$_2$ slag through a hopper. The Al$_2$S$_3$ was produced in situ by introducing S. The slag composition was varied and the reduction temperature was optimized to 1060°C. Continuous stirring of the melt using a ceramic stirrer aided the reaction as a result of which small Si platelets were formed which are collected for grinding and acid leaching.

For preparation of Si ingot, a high vacuum graphite resistance-heated furnace of the Heat Exchanger Method (HEM) with a silica-lined graphite crucible was used for directional solidification (Figure 3). This process of HEM growth had been perfected by Khattak and Schmid. Pre-melted small Si nuggets were used as compaction of fine powder proved difficult. Using this technique 4 inch diameter silicon ingots (Figure 4) were grown having grain size between 2 and 5 mm as required for efficient multi-crystalline solar cells. Due to the use of Al as the reducing agent, the ingot resistivity was found to be rather low ~0.04 ohm-cm with hole concentration of 3×10^{19}/cm3 and hole mobility of 50 cm2/V.s. This amounted to ~60 ppm Al which could be reduced further by directional solidification as the distribution coefficient of Al in Si is 1.8×10^{-3}. With slagging the resistivity was increased to 0.08 ohm-cm; Secondary Ion Mass Spectrometry studies showed that this was mainly due to reduction of Al and also B, K and Ca. Al acts as a shallow acceptor in silicon with an ionization energy of 0.056 eV and is acceptable as it results in p-type conductivity as used as the base layer in solar cells.

A multi-crystalline sample of Si was used as a photoelectrode in a photoelectrochemical (PEC) solar cell. While a single crystal sample gave an open-circuit voltage $V_{oc} \sim 400$ mV, under identical conditions the sample obtained from rice-husk gave $V_{oc} \sim 250$ mV. From I–V characteristics the grain boundary height was found to be 0.056 eV which decreased on hydrogen passivation, suggesting the presence of O at the grain boundaries.

The feasibility of alumino-thermic reduction of white ash was demonstrated in these experiments. Large grain multi-crystalline Si ingots were thus prepared by directional solidification. Recently a company in California has reported the use of ‘rice hulls’ by carbo-thermic reduction to obtain solar-grade silicon. The report claims to reduce the energy input to 50 kWh/kg from 200 kWh/kg in the
Siemens process. Alumino-thermic reduction should require even less energy due to the considerably lower temperature of reduction. Further reduction of Al content is required by slagging or directional solidification.

ACKNOWLEDGMENTS. We are grateful to M.N.E.S., New Delhi for funding a project on ‘Polycrystalline silicon from rice-husk’ and DST, Govt of West Bengal for a project on ‘Low cost silicon for photovoltaic applications’ in which the work on quartzite was carried out.

Received 5 December 2014; accepted 27 December 2014

D. N. Bose1,2,*
A. R. Haldar1
T. K. Chaudhuri1

1Formerly at Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
2St. Xavier’s College, 30 Mother Teresa Sarani, Kolkata 700 016, India
*For correspondence.
e-mail: dwarkabose322@gmail.com

Uranium mineralization in Palaeoproterozoic Khetabari Formation, Bomdila Group, Sie-Rimi area, West Siang district, Arunachal Pradesh

The Palaeoproterozoic low-grade metasedimentary rocks of Bomdila Group, Arunachal Pradesh, occurring as a NNE to NE trending belt in the easternmost part of the Lesser Himalaya have been recognized as favourable hosts for uranium mineralization. Its basal subdivision, the Khetabari Formation having ferruginous, calcareous quartzitic metasediments, graphitic/carbonaceous phyllite, minor carbonates, chert and paragneiss and garnetiferous psammites is bounded by the Permo carboniferous Gondwana equivalent Mri quartzite in the east and with the 1.9-Ga-old intrusive Bomdila/Ziro Gneisses in the west. The rocks of the Khetabari Formation show multiple episodes of deformation. The F1 folds usually identifiable in the psammitic rocks of the Khetabari Formation are of isoclinal geometry. The most pervasive planar fabric S1 is developed parallel to the axial plane of the F1 folds and in most places parallel to the S0 plane (original bedding plane), except near the hinges. The F2 folds dipping at moderate to steep angles towards SE developed during the subsequent deformation are superimposed over F1. Coaxial refolding of the F1 folds producing crenulation cleavage (S2) is found generally in the limbs of the isoclinal folds within quartzo-feldspathic schists.1 Effect of ductile shearing within the psammo-pelites of the Khetabari Formation is evident by the presence of asymmetric quartz porphyroclasts having long tails, sigmoidal-shaped quartz laminae in the schistose portion, pinch and swell of quartz grains, etc.

Exploration efforts over three decades have resulted in locating about 200 uranium occurrences in a variety of rocks mainly of Palaeoproterozoic age. Conspicuously, uranium mineralization in all these lithounits is invariably associated with sulphides. Sericitization, chloritization, hematitization and silicification are

Figure 4. Four inch diameter multi-crystalline Si ingot from rice-husk (adapted from ref. 10).