The unseen impact of nanoparticles: more or less?

Mansi Bakshi, H. B. Singh and P. C. Abhilash

The nano-revolution\(^1\) has created a market for nano-based products and is expected to change industrial production and economics over the decades to come\(^2\). As this new field is breaking the barriers between fundamental disciplines such as chemistry, physics and biology, the application field is also getting broad such as health (medical products such as heart valves, drug-delivery systems and imaging techniques), sports (sports equipment), food production (pesticide delivery, nutrient delivery, etc.), environmental remediation (remediation of pesticides), cosmetics, etc.\(^2\). However, majority of the nanoparticles are being introduced into the market on the basis of claimed benefits\(^3\) and the eco-toxicological profile of many of these products is unknown to the scientific community. The rising number of works on the toxic (geno-toxicological) effects of nanoparticles clearly warrants that apart from the benefits, nanotechnologies also produce uncertainties and risks.\(^4\)

Although nanoparticles are widely used for analytical and in imaging field, many researchers consider it as an emerging contaminant and have started developing sensitive analytical methods for their detection from environmental samples.\(^5\)

Therefore, the present article discusses the potential environmental risks and uncertainties associated with the use of nanoparticles and highlights few factual cases from the literature to ascribe the toxic and bioaccumulative potential of such particles. While our deliberations are not intended to overlook the past and ongoing remarkable contributions of various researchers in this booming field, we urge the scientific community to have a detailed geno-toxicological and eco-toxicological approach to ensure the safety and risks before the field utilization of such particles, products or any formulations.

Recently, studies demonstrated that silica (70 nm) and titanium dioxide (35 nm) nanoparticles can cross the placent barrier in pregnant mice and cause neurotoxicity in their offspring\(^6\). Moreover, it has been reported that round T\(_{\text{T}}\)O\(_{\text{2}}\) improved the germination, seedling growth and photosynthetic rate in wheat and spinach in comparison to the untreated control plants.\(^7\) However, it is widely accepted that the uptake, bioaccumulation, biotransformation and risks of nanoparticles for food crops are still not well understood and few nanoparticles and plant species have been studied so far and very few references are available on the biotransformation of nanoparticles within the food plants.\(^8\) Furthermore, the detailed biomagnification of nanoparticles in food chain is also not known (Figure 1). However, previous studies have reported that nanoparticles can accumulate in living organisms and can be transferred from prey to predator (trophic transfer)\(^9\) and even these materials can be biomagnified. Ferry et al.\(^10\) proved that gold nanorods can readily pass from the water column to the marine food web in three laboratory constructed estuarine mesocosms containing sea water, sediment, sea grass, microbes, biofilms, snails, clams, shrimp and fish. Similarly, in an experimental microbial food chain, Werlin et al.\(^11\) demonstrated that CdSe quantum dots were accumulated in bacteria Pseudomonas aeruginosa and were transferred and biomagnified in a protozoa Tetrahymena thermophila that preyed on the bacteria. Interestingly, the quantum dots concentration in the protozoa predator was approximately five times higher than the bacterial prey.\(^12\)

Although there is an increasing concern regarding the unknown toxicity of nanoparticles, lack of proper experimental methods for the validation of toxicological assays is a major impediment in nanotoxicology itself. A recent editorial in Nature Nanotechnology clearly pointed out the various challenges faced by this relatively new field. It raised an important question to the scientific community regarding the growing uncertainty and toxicity of nanoparticles as "twenty years of research has confirmed that nanoscale materials can display unexpected and unusual toxicity, but just how much have we learnt about the interactions between engineered nanomaterials and humans, animals and the environment?"\(^13\). Most importantly, the editorial mentioned some worrying aspects of nanotoxicology such as: (i) materials that are not harmful in bulk form may well be toxic on the nanoscale; (ii) nanoparticles are also more likely to react with cells and various biological components such as proteins, and to travel through organisms;\(^14\) (iii) traditional toxicological assays to find out the dose–response relationship are not workable in the case of
nanoparticles because unlike the soluble chemicals tested for dose–response studies, nanoparticles have shapes and surface areas, and they can diffuse, aggregate/agglomerate and sediment according to their size, density, and physical and chemical properties in solution30; (iv) many toxicity studies of nanoparticles have been done at much higher doses than is realistic, so that the resultant toxicity profile is not sufficient to interpret or extrapolate the realistic toxicity of these materials30. The editorial also concluded with a pragmatic comment that ‘the big challenges in the coming years are to understand how physical and chemical properties of nanomaterials govern their interactions and responses, and to inform the public on the benefits and risks associated with the use of nanomaterials’30.

The above assertions clearly indicate that the field of nanotoxicology is still in its infancy and much of the assayed toxicity of nanoparticles may be less or higher than the actual toxicity. So we have to design new ways and means to calculate the real toxicity of nanoparticles. Even the standard phytotoxicity tests such as germination and root elongation may not be sensitive enough or appropriate when evaluating nanoparticle toxicity to plant species32. Therefore, as mentioned by Saez et al.1, the successful integration of various disciplines underpinning the fundamentals of nanoparticles such as physics, chemistry, biology, materials science and engineering and the applied disciplines such as molecular, toxicological and eco-toxicological approaches together with societal and regulatory contexts are essential for outlining the broad implications of nanoparticles on human health and the environment. Furthermore, detailed life-cycle assessment of every nanoparticle/material either in bulk form or in nano form is essential for ensuring the safety of the material. Without this exercise, we cannot promote the use of nanoparticles or nano-based products.

Figure 1. The possible interaction of nanoparticles in soil system. The unseen impacts of nanoparticles may be less or worse than known. However, proper evaluation based on realistic experimental and real-time models is essential to ensure the safety and efficacy of nanoparticles on humans, plants, non-targeted organisms and the ecosystem as a whole.

OPINION

Food Chem., 2010, 58, 689–693.
2006, 40, 6151–6156.

ACKNOWLEDGEMENTS. We thank the Director, Institute of Environment and Sustainable Development, Banaras Hindu
University, Varanasi for encouragement. M.B. thanks the University Grants Commission, New Delhi for awarding UGC-NET-JRF.

Mansi Bakshi and P. C. Abhilash* are in the Institute of Environment and Sustainable Development, Banaras Hindu
University, Varanasi 221 005, India; H. B. Singh is in the Department of Mycology and Plant Pathology, Institute of Agricul-
tural Sciences, Banaras Hindu University, Varanasi 221 005, India.
*e-mail: pca.iesd@bhu.ac.in

CURRENT SCIENCE

Display Advertisement Rates

<table>
<thead>
<tr>
<th>India</th>
<th>No. of insertions</th>
<th>Inside pages</th>
<th>B&W</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inside cover pages</td>
<td>B&W</td>
<td>Colour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Back cover pages</td>
<td>B&W</td>
<td>Colour</td>
</tr>
<tr>
<td>Full page</td>
<td>1</td>
<td>12,000</td>
<td>20,000</td>
<td>18,000</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>21,600</td>
<td>36,000</td>
<td>32,000</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>42,000</td>
<td>70,000</td>
<td>63,000</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>60,000</td>
<td>1,00,000</td>
<td>90,000</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>75,000</td>
<td>1,25,000</td>
<td>1,15,000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>90,000</td>
<td>1,50,000</td>
<td>1,35,000</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1,00,000</td>
<td>1,65,000</td>
<td>1,50,000</td>
</tr>
<tr>
<td>Half page</td>
<td>1</td>
<td>7,000</td>
<td>12,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12,500</td>
<td>22,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>23,750</td>
<td>42,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>33,500</td>
<td>60,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>42,000</td>
<td>75,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>50,000</td>
<td>90,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>55,000</td>
<td>1,00,000</td>
<td></td>
</tr>
</tbody>
</table>

We also have provision for quarter page display advertisement:

Quarter page: 4,000 per insertion (in Rupees)

Note: For payments towards the advertisement charges, Cheque (local/multiicity) or Demand Drafts may be drawn in favour of ‘**Current Science Association, Bangalore**’.

Other Countries

<table>
<thead>
<tr>
<th>Size</th>
<th>No. of insertions</th>
<th>Inside pages</th>
<th>B&W</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inside cover pages</td>
<td>B&W</td>
<td>Colour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Back cover pages</td>
<td>B&W</td>
<td>Colour</td>
</tr>
<tr>
<td>Full page</td>
<td>1</td>
<td>300</td>
<td>650</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1,500</td>
<td>3000</td>
<td>2250</td>
</tr>
<tr>
<td>Half page</td>
<td>1</td>
<td>200</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1000</td>
<td>2000</td>
<td></td>
</tr>
</tbody>
</table>

*25% rebate for institutional members

Contact us: Current Science Association, C.V. Raman Avenue, P.B. No. 8001, Bangalore 560 080 or E-mail: csc@ias.ernet.in

Last date for receiving advertising material: Ten days before the scheduled date of publication.

352 CURRENT SCIENCE, VOL. 106, NO. 3, 10 FEBRUARY 2014