Indian science: concerns on competitiveness

The Prime Minister’s address in January 2012 to the 44th Indian Science Congress started a debate on the overall status of Indian science. A recent report in *Science* speaks of excellence in space and nuclear science in India, and in institutions like IITs, IISc and IISERs. In spite of this excellence, our competitors like China and South Korea are progressing faster, leading to an overall gap in quality and competitiveness. Thus, the way forward is difficult, if not impossible. The mess created by the overseeing agencies like AICTE and MCI in the case of institutions of engineering and medicine is also in public domain. Similarly, the mushrooming of several universities under the aegis of the states without even a threshold level of infrastructure and faculty is also common knowledge. Another concern is the faculty shortage even in premier institutions. Recent concerns led to a reality check on the quality of school teachers. It was a rude shock to know that most of the teachers failed the Teachers Eligibility Test mandatory under the Right to Education Act. The very foundation of science education is crumbling. The problem has been further compounded due to tunnel-vision expansion with bare statistics in mind, bright students veering away from science and, essentially, saturation of science and education with mediocrity. It is germane to recall that we have the best recommendations in terms of science policy and vision statements. In spite of this, there is an overall impression of stasis and inertia. The problem of mediocrity from school to the highest level in education and research has been compounded by the archaic rules, regulations and bureaucracy. We have a vast pool of talent which prefers to move to courses like information technology and management due to a lack of mentors and role-models in science in school and higher education. We hear platitudes like creation of centres of excellence or knowledge economy at regular intervals. It is great to hear words like ‘innovation’, ‘creativity’ or ‘thinking out of the box’. However, these do not mean much without action which gives tangible results in a time-frame. Initiatives like INSPIRE fellowships have been started for spotting talent for scientific research. A regular impact assessment of such programmes is imperative.

In the backdrop of the above scenario, the following ‘action plan’ is urgently needed:

1. Teaching creative thinking with emphasis on active learning rather than passive or learning by rote.
2. Implementing teaching methods where every student participates (rather than simply listening to the instructor).
3. Emphasis on creative and critical thinking including inculcating the habit to question, develop opinions and the ability to think in a constructive way to improve upon the existing methods and designs.
4. Encouragement at the school level to try out new things, doing things in an unorthodox manner, whenever feasible and question the conventional methods.
5. Introduction of an appropriate system of evaluation of mentors by the mentees.
6. Periodic ‘health check-up’ of institutions by surveys on the opinion of the students, research scholars and faculty on the issues which affect their career and growth and all issues related to the cultivation of science.

Doing science is more than doing a routine job. There has to be motivation and commitment. Thus, faculty hiring in schools and institutions of higher learning is the most crucial area which needs attention. Raghavendra Gadagkar, a sociobiologist at IISc, quoted in the *Science* report, says: ‘Scores of universities are deteriorating or riddled with corruption. They nurture few stars and are overburdened with dead wood. On a day-to-day basis, people are discouraged from doing breakthrough research. Our system creates followers, not leaders.’ A clear message should go by way of visible action that merit alone would prevail and that the non-performers would be discarded. The latter is needed to avoid accumulation of scum in educational and research institutions. One of the ways to achieve the objective of hiring and nurturing quality faculty is the American system of tenure track. To quote Zare: ‘In the American university system we hire faculty and then must decide within seven years whether we want them permanently to remain with us, namely, are they given “tenure” or not. It is always a difficult decision as those faculty we tenured determine the quality, characteristics and reputation of our Department.’ I am sure this would be one of the most important steps towards achieving global competitiveness.

OM P. SHARMA

Indian Veterinary Research Institute, Regional Station, Palampur 176 061, India
e-mail: omsharma53@yahoo.com

CORRESPONDENCE

Sharing of best practices or plagiarism?

If you visit the website of Indian Institute of Technology (IIT), Delhi, you will find the following vision and mission statements.

Vision: To contribute to India and the world through excellence in scientific and technical education and research; to serve as a valuable resource for industry and society; and remain a source of pride for all Indians.

Mission: (i) To generate new knowledge by engaging in cutting-edge research...
Science teaching: from boring lecture to a performing art

I enjoyed reading the editorial by Balam addressing an important topic of teaching that eloquently concludes by stating ‘For young researchers, teaching must be a joy, not a chore to be avoided’¹. I would like to add that teaching must transform both teachers and students and such transformation can only come if teaching is done as a performing art². Teaching indeed is a theatrical art because teachers have got to interact with students and not introspect. Teaching not only requires subject knowledge, but also the ability to understand students’ environment, including learning styles so that teachers can adapt to flexible modes of effective delivery.

Recently, I had a chance to observe teaching in India while reviewing an environmental science course (M.Sc degree) in a university, where young scientists preferred to use power-point presentations. It appears that most higher education teachers maximize the use of technology via power-point slides, videos, animations and virtual-reality tools that may enhance teaching, while triggering at times the audience to dose off naturally in dark classrooms. But the question is – do teachers rely more on technology and miss out vital classroom interactions? The power-point slides of science lectures can be easily downloaded from the net and it may ease the teaching preparation. Nonetheless the technology alone will never leave long-lasting memory in the minds of students. Those who want to become teachers should recollect the names or faces of their own teachers back from their college days who had left an impressive memory in their minds, and all I could remember now is two of my college teachers who had taught Shakespeare’s drama in the early 1970s. Being great actors, they had left an ever-lasting memory in my mind, while many good science teachers faded away like the morning mist in distant memory.

Scientists have to integrate their dynamic public-speaking skills while delivering lectures. When they lack enthusiasm to perform in classrooms as actors while engaging the students, even the best scientists can become the worst teachers. Most institutes of higher learning now prefer to hire professors based on their scientific publications in high-impact journals and often ask potential candidates to give seminar presentations. Instead, if they give equal preference to teaching and if they assess candidates based on their acting and live performance.