CORRESPONDENCE

English: the heartbeat of world science

The results of the ACER–PISA test for annual global assessment of students’ skills for 2011, conducted by the Organization for Economic Cooperation and Development, shows the Chinese on the top and the Indians in the last but one position of the South and South East Asian nations1. The analysis puts the blame squarely on ‘ineffective’ English teaching in professional institutions and consequent ‘inability’ of the students to frame a sentence on their own in English. A cartoon in an English daily, illustrating the article shows the Indian students sleeping or chatting over a laptop, whereas the Chinese students take pains to learn and practice.

Whether or not English is the international language of science is no more debated. The issue is the assessment of the contribution to science by different linguistic nations vis-a-vis their standard language of science is no more a matter of quantity of grammar and syntactic errors in English writing than in the quality of expression and thematic logistics2.

1 Chaudhuri, A., Deccan Chronicle, Hyderabad, February 2012.

C. KAVITHA1,*
S. SUSHMA RAJ2

1 Department of Electronics/Physics,
2 Department of English,
GITAM Institute of Science,
GITAM University,
Visakhapatnam 520 045, India
e-mail: kavithachandu2000@yahoo.co.in

Pharmacognostic standardization to diminish involuntary adulteration and substitution in Ayurvedic herbs

The ancient indigenous system of medicine – Ayurveda is in great demand and popular in developed and developing countries as it gives effective remedies for the functional disorders, chronic diseases and age-related problems. However, a serious drawback of the Ayurvedic system is identifying the genuine medicinal herbs prescribed by the founders of the system. The description of medicinal plants is more poetic than scientific and lacks precision, due to paucity of technical language. Moreover, the founders did not follow a systematic and technical format for description of plants. So the interpretation of the description in Sanskrit is largely influenced by views of the interpreters. This often leads to adulteration and/or substitution in official resources of Ayurvedic herbs. Unscientific nomenclature is another serious drawback of Ayurveda. According to the principle of nomenclature, one plant species has only one valid binomial name, which diminished the possibility of confusion. Absence of such well-defined and uniform system of nomenclature accompanied by indiscriminate use of local names has created great confusion in this subject, e.g. ‘Pittapapda’ is a complex in which nine different species such as Glossocardia boswallea DC., Fumaria indica (Haussk.) Pugsley, Naregamia alata Wight & Arn., Rostellaria procumbens (L.) Nees, Rungia repens Nees, Mollugo pentaphylla L., Polycarpacea corymbosa Lam., Hedyotis corymbosa (L.) Lam, and Peristrophe bicalyculata Nees are traded in different geographical regions of India under the same trade name3. Majority of plant materials are collected by local people with lack of correct identity of the resources, resulting in a collection of superficially similar natural resources, e.g. stem bark of Saraca asoca De Wilde is the authentic drug of ‘Ashoka’. Stem bark of Saraca declinata L., Trema orientalis (L.) Blum and Polyalthia longifolia Benth are morphologically similar and commonly intermixed with the genuine sample. Frequently, the adulterated product may have no relation with the genuine plant material, and may or may not have any

CURRENT SCIENCE, VOL. 102, NO. 8, 25 APRIL 2012