A comparative study to elucidate the inhibitory mechanism of a 6-mer fragment of amyloid-beta 42 peptide as a potential therapeutic in Alzheimer’s disease: insights from molecular dynamics simulations

Mary Dutta and Venkata Satish Kumar Mattaparthi*
Department of Molecular Biology and Biotechnology, Tezpur University, Sonitpur 784 028, India

Alzheimer’s disease is a neurodegenerative and incurable disease that is associated with the amyloid beta (Aβ) aggregation. We have carried out comparative molecular dynamics simulations of a 6-mer peptide and its analogues to elucidate the inhibitory mechanism on Aβ aggregation. The top analogue screened after refinement via docking exhibited significant inhibitory activities on both Aβ_{17-42} fibril as well as Aβ_{1-42} monomer, leading to disassembly of β-strands of Aβ_{1-42} peptide and fibril by interacting with C-terminal residues via hydrogen bonds and hydrophobic contacts. Binding of the analogue to the C-terminal region proves to be significant.

Keywords: Alzheimer’s disease, aggregation, docking, hydrophobic interaction, inhibitor peptide.

AMYLOIDOSIS stems from the accumulation of insoluble protein fibrils in an abnormal form. Amyloids, the aggregates formed by self-association of such insoluble protein fibrils, are associated with Alzheimer’s disease (AD), which is one of the most common forms of dementia. Transgenic modelling studies have demonstrated the key role of amyloid beta (Aβ) peptides in the etiology of AD. Isoforms of Aβ are generated by sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretases enzymes. Aβ_{1-42} peptide which is normally more toxic, exists as an unordered random coil, later exhibits a transition towards cross-β-sheet pattern in abnormal conditions, and finally aggregates to form the matured fibrils. Amyloid fibrils form cross-β-sheet structures by the association of β-strands, where the individual β-strands are arranged in a parallel, in-register form, wherein formation of disulphide bonds plays a critical role in initiating the fibrillation process.

Different strategies have been developed to inhibit the formation of amyloid fibrils. Studies report that few molecules can even disintegrate preformed amyloid fibrils. Inhibitors may inhibit amyloid formation by binding and stabilizing the native folded state of a protein or by binding to aggregation-prone regions of amyloidogenic peptides and thereby prohibit self-assembly. Although a number of compounds targeting β- or γ-secretases have made up to clinical trials, many such compounds have failed lately. Likewise, most immunotherapies that have shown progress in the reduction of Aβ_{1-42} peptide load have caused adverse events that are yet to be resolved. The molecular chelators PBT1 and PBT2 developed to disrupt the interactions between Aβ_{1-42} peptide and metals failed during the clinical trials. Likewise, the approaches based on small molecules such as curcumin, RS0406 and some polyphenols have not yielded therapeutically important molecules.

Ever since Aβ_{1-42} peptide is known to bind to itself, it can be used as a lead in generating novel fragments that can be modified as inhibitors for the parent peptide. In recent studies, many modified peptides derived from the central hydrophobic region of the Aβ_{1-42} peptide sequence have been designed as inhibitors for its aggregation. One of the inhibitors which has been modified based on Aβ_{17-21} fragment has completed phase II clinical trials in humans. Similarly, it has been reported that a series of Aβ_{1-42} C-terminal fragments act as the most effective inhibitors of Aβ_{1-42} peptide-induced toxicity. Another study has successfully designed N-methylated hexapeptides based on fragment Aβ_{12-37}, which proved to be efficient inhibitors of Aβ_{1-42} aggregation. The molecules that possess high binding affinity for the C-terminus of Aβ_{1-42} peptide may disrupt the self-aggregation of Aβ_{1-42}.

It is known that hydrophobic interactions play an important role in protein aggregation. It has also been suggested that the hydrophobic C-terminus of Aβ_{1-42} peptide can control its self-aggregation. Therefore, the designing of inhibitors has shifted to the central hydrophobic sequence of Aβ_{1-42} peptide. Inhibitors based on C-terminus fragments can easily bind to the parent peptide, and thus may inhibit amyloid formation. Bansal et al. have reported a number of peptide-based inhibitors that displayed significant Aβ aggregation inhibitory activity.
on both the isoforms. They have taken the 6-mer Aβ32-37 fragment as lead peptide and synthesized 42 new peptides by replacing all six amino acids by amino acids of both natural and unnatural origin which are isostERICally analogous. From the methyl thiazol tetrazolium (MTT)-based cell viability assay, lead peptide was found to completely protect cells from Aβ1-42 and Aβ1-40 peptide-induced toxicity and the other ten analogous peptides were found to be moderately active on Aβ1-40-induced toxicity. Additionally CD spectroscopy and morphological examination by transmission electron microscopy confirmed the results.

Bansal et al.26 found the reference peptide to completely protect cells from Aβ1-42 and Aβ1-40 peptide-induced toxicity and the reported analogues to be moderately active on Aβ1-40-induced toxicity. However, they have not studied the effect of the analogues on Aβ1-42-induced toxicity. In the present study, we used lead peptide and the reported analogues of natural origin to study the molecular recognition and inhibitory mechanism using MD simulations.

All the 7 analogues of natural origin were assessed via docking to check their binding affinities to Aβ1-42 monomer and Aβ17-42 fibril relative to the original peptide. We found analogue 6 (IGLMV) to have higher ACE and the surface area relative to reference peptide. Analogue 6 was therefore used to study its inhibitory effect on the Aβ17-42 fibrils. Also, the top scoring analogue 6 was assessed by performing unbinding MD simulations with the Aβ1-42 monomer in explicit solvent subsequently generating their potential of mean force (PMF)27 using umbrella sampling (US) simulations28. The analogue 6-Aβ1-42 monomer complex was first equilibrated in a box of water. Analogue 6 was then pulled apart at a constant rate, the forces monitored, and the free energy change calculated as a function of separation. The detailed energetics of the complex formation and the conformational changes undergone by the Aβ1-42 monomer were monitored. The revelation of binding regions of the Aβ1-42 monomer with the analogue 6 will help in designing more effective inhibitors for Aβ1-42 aggregation.

Materials and methods

Construction of input files for docking

Computational model of initial Aβ1-42 peptide monomer: The initial Aβ1-42 peptide monomer (PDB ID: 1IYT)29 was retrieved from the RCSB Protein Data Bank30. Counter ions (3 Na+) were added to make the net charge of the system zero. TIP3PBOX31 water model with 10 Å in all directions was used to solvate the system. Total number of particles in the system was 15885. Two minimization cycles were performed on the Aβ1-42 peptide monomer. The first cycle was performed under T, V, N conditions keeping the monomer fixed in order to relax the water. The subsequent minimization was performed with no constraints on the monomer. After the energy minimization, we gradually heated up the minimized structure from 0 K to 300 K over 20 ps in a total of 6 stages (0 to 50 K, 50 to 100 K, 100 to 150 K, 150 to 200 K, 200 to 250 K and 250 to 300 K). Heating in stages reduces the chances of the system blowing up by allowing it to equilibrate at each temperature. This is essential to avoid problems with hot solvent cold solute. The system was then equilibrated at 300 K for 100 ps which is sufficient for equilibration. Finally, 80 ns of NPT (number, pressure, temperature) MD simulations was carried out. The conformer with β-strands generated from trajectory analysis was used for docking.

MD simulations at 300 K and 1 bar pressure were performed in explicit solvent using AMBER 12 (ref. 32) package with the most recent force field f99SBildn (ref. 33). Periodic boundary conditions were applied. Berendsen thermostat was used to control the temperature and pressure of the system34. SHAKE algorithm was used to constrain all bonds and the time step of the simulation was 2 fs (ref. 35). Non-bonded and electrostatic forces were evaluated at each time step. Electrostatics was computed using Particle Mesh Ewald (PME) method36.

Computational model of initial reference peptide and the analogues: The initial reference peptide (IGLMVG) structure was extracted from the Aβ1-42 peptide (PDB ID: 1IYT)29 using pymol37. The reported seven analogues of natural origin were constructed from the initial reference peptide using Swiss-PDB Viewer37. TIP3PBOX31 water model with 10 Å in all directions was used to solvate the system with reference peptide and analogues individually. A total of 3556 number of water particles were added to each system. Further minimization and equilibration was carried out as described in previously. The conformers of the reference peptide and the seven analogues representing the most populated clusters after equilibration were used for docking.

Computational model of Aβ17-42 fibril structure: The 2BEG38 fibril structure was retrieved from the RCSB Protein Data Bank30. Counter ions (5 Na+) were added to make the net charge of the system zero. TIP3PBOX31 water model with 10 Å in all directions was used to solvate the initial 2-BEG fibril structure. A total of 44,465 water particles were added. Further minimization and equilibration was carried out as described previously. The conformer representing the most populated cluster after equilibration was used for docking.

Docking of Aβ1-42 peptide, Aβ17-42 fibril and 6-mer peptide

The reference peptide (IGLMVG) and the analogues were first assessed by docking in PatchDock server40 with
Aβ₁₋₄₂ monomer and Aβ₁₋₄₂ fibril respectively. This server applies the concept of geometric-based docking algorithm to select the optimum candidate with the RMSD clustering to remove the redundant models. Each model was given a score which implies docking transformation of one of the monomers which optimally fits with the other monomer inducing both wide interface areas and small amounts of steric clashes. In the present study, a default RMSD of 4 Å was considered. The docking scores of the reference peptide and the analogues with Aβ₁₋₄₂ monomer and Aβ₁₋₁₇ fibril were calculated. Analogue 6 that resulted in a higher docking score with maximum atomic contact energy and contact area when compared to the reference peptide was accepted.

The selected Aβ₁₋₄₂/analogue 6 complex and the Aβ₁₋₁₇/reference complex was solvated in TIP3P water model with a minimum distance of 10 Å to the border, and then subjected to a two-step restrained minimization, followed by heating as described previously. Within the box, the total number of particles in the system was 16796. The individual complexes were then equilibrated for 100 ps. As our initial complex structures had attained equilibrium, we ran production MD simulations for 10 ns. The conformer with the most populated cluster from the last trajectory was used for the PMF study.

Potential of mean force

Umbrella sampling simulations with the Weighted Histogram Analysis Method (WHAM)⁴¹ was performed in which the centre of mass of the backbone atoms of receptor peptide Aβ₁₋₄₂ and analogue were attached via harmonic restraint of 2 kcal/mol/Å². The analogue 6 was then pulled with a constant velocity along the reaction coordinate (RC), which is defined as the distance between the entire C-α atom of the amino acids of receptor peptide Aβ₁₋₄₂ and the analogue 6. For each independent simulation, the complex was allowed to sample only within that window. PMF was calculated by combining the data from each window which was achieved by applying a harmonic restraint to the RC. In each window, we have carried out 5 ns of simulation. To remove the non-equilibrium effects that may contaminate the PMF, the first 3 ns in each window were treated as an equilibrium phase, and as such were ignored for post-processing. The restart file of the previous step was used as the input file for the configuration in both increasing and decreasing cases. After an increment of 1 Å, windows were obtained. For each window 2 ns, NPT MD run was performed and for the next window the resulting equilibrated structure was used as the starting co-ordinate. After every MD run, the VMD package was used for the generated trajectories visualization⁴².

Results and discussion

Binding characteristics of the analogue

In the present study, we have carried out a comparative study to examine the inhibition mechanism of a 6-mer peptide. At the very beginning, we have evaluated the binding energy of the reference peptide and the reported analogues by docking. Analogue 6 (IGLMVV) was found to have the highest docking score. The docking score for the Aβ₁₋₄₂ monomer and Aβ₁₋₁₇ fibril is shown in Table 1. The binding conformations of analogue 6 with the Aβ₁₋₄₂ monomer and Aβ₁₋₁₇ fibril are shown in their bound form in Figure 1. Figure 1a shows the Aβ₁₋₄₂ monomer bound to the analogue 6. β-strand in the monomer is shown in green colour. Analogue 6 is shown in red color. In Figure 1b all the five strands are shown in different colours. Analogue 6 was selected to study the inhibitory mechanism against Aβ₁₋₄₂ aggregation. Analogue 6 was anchored to the amyloid fibril surface by its isoleucine at the N-terminal end. The hydrocarbon side chain of isoleucine fits into the hydrophobic glycine groove where it has hydrophobic interactions. Glycine and methionine of the analogue also form hydrophobic interactions with the methionine and closely located valine. Leucine was observed to form direct hydrogen bonds with valine. Their binding characteristics revealed a few key points. It can be concluded that hydrophobic interactions are the

| Table 1. Docking result of the 6-mer peptides with Aβ₁₋₄₂ monomer and Aβ₁₋₁₇ fibril respectively |
|-----------------|-----------------|-----------------|-----------------|
| 6-mer peptide | 6-mer peptide sequence | 6-mer peptide–Aβ₁₋₄₂ peptide monomer complex | 6-mer peptide–Aβ₁₋₁₇ fibril complex |
| Reference peptide | Ile–Gly–Leu–Met–Val–Gly–NH2 (reference peptide) | Area (Å²) | ACE (kcal/mol) | Area (Å²) | ACE (kcal/mol) |
| Analogue 1 | Ile–Val–Leu–Met–Val–Gly–NH2 | 498.50 | –216.23 | 570.50 | –286.81 |
| Analogue 5 | Ile–Gly–Leu–Met–Val–Ile–NH2 | 535.40 | –83.36 | 563.00 | –353.57 |
| Analogue 7 | Val–Gly–Leu–Met–Val–Gly–NH2 | 587.10 | –305.00 | 600.70 | –410.23 |
| | | 550.90 | –269.53 | 584.30 | –378.35 |

CURRENT SCIENCE, VOL. 114, NO. 6, 25 MARCH 2018 1209
primary factor that facilitates analogue binding to the amyloid fibril and the monomer. The secondary factor appears to be the hydrogen bonds.

Effect of the analogue on Aβ_{17–42} fibril

Aβ_{17–42} peptides that normally adopt α-helix and random coil conformations in aqueous solution undergo transition in their secondary structures to form intramolecular β-sheet structures under abnormal conditions and aggregates. By MD simulation, we studied the effect of analogue 6 on the conformational transition of Aβ_{17–42} fibril. Figure 2 shows the conformational dynamics of Aβ_{17–42} fibril in the presence of the analogue. From Figure 2, we can see the initial complex structure of the Aβ_{17–42} fibril with analogue 6 bound to it. After 60 ns time interval we notice secondary structural transitions in Aβ_{17–42} fibril. After 80 ns time interval, we notice disassembly of the β-strands in the fibrils in the presence of analogue 6. Thus in the presence of analogue 6, the intermolecular interactions that hold the strands together in the fibril are destabilized; as a result, the amyloid fibril undergoes disassembly. Analogue 6 may thus impart its inhibitory effect by destabilizing various interactions and affecting the β-strands in Aβ_{17–42} fibril. We also ensured the efficiency of analogue 6 as a potent inhibitor from the outcome of control simulation (Supplementary Figure 1).

Potential of mean force for unbinding the analogue

We have computed the free energy profile of the association of the reference peptide and analogue 6 to the Aβ_{17–42} monomer to elucidate their interaction. The interaction was thus studied using US simulations with distance as a function of time whereby the relative binding affinities of the analogue-Aβ_{17–42} monomer complex were determined. Figure 3 shows the result of the free energy profile. The initial reference peptide and analogue Aβ_{17–42} monomer complex was formed at an inter-chain distance of 11 Å. As we pulled out the reference peptide from the Aβ_{17–42} monomer, we observed a high free energy of ~7 kcal/mol. The global minima structure was formed at an inter-chain distance of 11 Å. Thus it can be inferred that the reference peptide binds strongly with the Aβ_{17–42} monomer. In the case of analogue 6, as we pulled it out from the Aβ_{17–42} monomer, we observed a low van der Waals force of repulsion till a distance of ~16 Å. At a distance of ~16 Å the global minima structure was formed which exhibited minimum energy among all other conformations. After the global minima structure was formed the van der Waals force of attraction suddenly increased and dissociation energy was found to be quite high, around 4 kcal/mol.

Although the reference peptide was found to bind strongly to Aβ_{17–42} peptide when compared to analogue 6, the disappearance of β-strands in Aβ_{17–42} peptide is more pronounced in the presence of analogue 6 (can be seen from Figure 4) than in the presence of reference peptide as shown in Supplementary Figure 2. In addition, we observed that the reference peptide binds to the N-terminal region of the Aβ_{17–42} peptide and analogue 6 binds to the C-terminal region of the Aβ_{17–42} peptide (Figure 4). As C-terminal region is crucial for Aβ_{17–42} peptide aggregation, binding of analogue 6 to the C-terminal region of Aβ_{17–42} peptide proves to be significant. Additionally, to study the binding characteristics of the reference peptide and analogue 6 with Aβ_{17–42} monomer, we isolated the global minima structures from the free energy profile and carried out analysis for the residue–residue contacts between the reference peptide and Aβ_{17–42} monomer as well as analogue 6 and Aβ_{17–42} monomer.

Interaction profile of the reference peptide and the analogue with Aβ_{17–42} peptide

The contacts between residues of Aβ_{17–42} peptide and reference peptide as well as the analogue were studied based on their shape and chemical complementarity using contact map analysis (CMA)\(^4\). The analysis result displays atom-to-atom contacts for the pair of amino acid residues involved in the interaction in the form of a contact map. To study the residue–residue contacts in the present analysis, a contact area threshold above 8 Å\(^2\) was set. These interactions can be attributed to non-specific hydrophobic contacts between Cα atoms of the above residues. The propensity of interactions is primarily mediated by the presence of surface hydrophobic groups available for interaction. Figure 5 a and b displays the residues of Aβ_{17–42} monomer that interact with the reference peptide as well as analogue 6 respectively. From Figure 5 a we observe that most of the N-terminal residues of Aβ_{17–42} monomer interact with the reference peptide. On the contrary, from Figure 5 b we see that most of the residues involved in the interaction between Aβ_{17–42} monomer and analogue 6 belong to the C-terminal region and are hydrophobic in nature. Since it is known that the C-terminal

Figure 1. Structure of (a) the initial Aβ_{17–42} monomer/analogue 6 complex; (b) the initial Aβ_{17–42} fibril/analogue 6 complex with the highest atomic contact energy and surface area score obtained from PatchDock server.
Figure 2. Conformational dynamics of Aβ1-42 fibril in the presence of analogue 6 at different time courses of simulation at 300 K.

Figure 3. Potential of mean force of Aβ1–42 monomer/reference peptide and Aβ1–42 monomer/analogue 6 (in kcal/mol) as a function of the inter-chain distance (in Å) which is between the centre of mass of the C-α atom of two peptides.

Figure 4. Snapshots of Aβ1-42 monomer/analogue 6 complex at different inter-chain distances during the potential of mean force analysis at 300 K.

Figure 5. Contact map analysis showing residue–residue intercations in the global minima structure of: a, Aβ1-42 monomer/reference peptide complex; b, Aβ1-42 monomer/analogue 6 complex.

region plays an important role in the aggregation of Aβ1-42 peptide, binding of the analogue 6 to the C-terminal region of Aβ1-42 monomer seems crucial. Furthermore, we also carried out the protein ligand interaction study using PDBSum server 44. The LigPlot results displaying Aβ1-42 monomer–reference peptide interaction and Aβ1-42 monomer–analogue 6 interactions are shown in Figure 6 a and b respectively. From Figure 6 a and b we observe hydrophobic interactions as well as hydrogen bonding to be the prime factors in governing the stability of the complex. Arg5, Tyr10, Glu11 and Lys16 of Aβ1-42 monomer form hydrogen bonds with the reference peptide; His6, Ser8, Val12 and Leu34 form hydrophobic interactions (Figure 6 a). In the case of analogue 6, Ser26, Asn27, Ile31, Val40, Ile41 of Aβ1-42 monomer form hydrophobic interactions (Figure 6 b). Lysine and glycine at positions 28 and 29 respectively form hydrogen
bonds with the analogue. From the above results we see that the analogue binds to $\text{A}\beta_{1-42}$ monomer mostly in the C-terminal end which is known as the aggregation prone area. We can expect this analogue to be a potent inhibitor of Aβ peptide aggregation.

Conclusion

We have carried out a comparative study using docking and MD simulations to elucidate the inhibitory mechanism of a 6-mer peptide on $\text{A}\beta_{1-42}$ peptide aggregation. The results indicate one of the analogues (IGLMVV) to be a potent therapeutic candidate for $\text{A}\beta_{1-42}$ peptide aggregation than the reference peptide. Our analogue shows promising results, provides insight into the inhibitor binding mechanism in detail, thus providing a direction for further drug designing analysis. The MD simulation of the analogue and fibril complex showed that the analogue binds to the fibril with a high affinity and thus imparts its inhibitory effect by dissociating the fibril to single strands. Also, it influences the secondary structural changes in the fibril as well as the monomer by decreasing the β-strand content. From the free energy analysis with the monomer, the affinity of the analogue can be confirmed to be strong. High dissociation energy specifies the strong affinity of the analogue to the peptide. Hydrophobic interaction plays an important role in the inhibitory mechanism of the analogue. Formation of strong hydrophobic interaction with the fibril as well as with the monomer leads to the dissociation of the fibril and loss of β-strands respectively. Although the free energy for the reference peptide is higher than the analogue, from the contact map analysis it was found that most residues of the $\text{A}\beta_{1-42}$ monomer interacting with the reference peptide were from the N-terminal region. As C-terminal region is crucial for $\text{A}\beta_{1-42}$ peptide – $\text{A}\beta_{1-42}$ peptide interaction, binding of the analogue to the C-terminal region of $\text{A}\beta_{1-42}$ peptide proves to be significant. In the light of the docking and the free energy results, we suggest the analogue to be a potent therapeutic agent.

Conflict of Interest: The authors declare no conflict of interest.

RESEARCH ARTICLES

ACKNOWLEDGEMENTS. We thank Tezpur University for the start-up grant and DBT funded Bioinformatics Infrastructure facility in the Department of Molecular Biology and Biotechnology at Tezpur University.

Received 2 August 2017; revised accepted 20 November 2017
doi: 10.18520/cvs/n14/i06/1207-1213

CURRENT SCIENCE, VOL. 114, NO. 6, 25 MARCH 2018

1213