Carbon nanotubes and graphene-based chemical sensors

Abha Misra*
Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560 012, India

The chemical sensing behaviour of the carbon nanotube and graphene-based sensors for detecting various chemical analytes is presented in this article. A focus on detection mechanisms has been provided to assess their relative potential under different environmental conditions. The performance of these two carbon allotropes is compared based on their sensitivity towards various types of electron donating and accepting molecules. Although these carbon materials still have to meet crucial challenges in fabrication and optimization, continued progress in this field may lead to a sensor with superior sensitivity for a wide range of applications.

Keywords: Carbon nanotubes, chemical sensors, electron donors and acceptors, graphene.

Introduction

Carbon-based technology has been emerged to develop highly sensitive, inexpensive and low-power devices proposing an alternative to silicon-based conventional technology that involves rigorous fabrication steps using top-down approach. Also, it has already been speculated that the scaling of silicon-based devices will soon reach their limit; therefore, there is an urgent need to explore novel materials. Carbon materials such as carbon nanotubes (CNT) and graphene with inherent nanoscale characteristics have offered a great potential for presenting next-generation material for diverse applications such as field emission, electronics, sensors and energy. High quality crystal lattices provide these materials excellent carrier mobility (e.g. ballistic conduction) with much lower thermal and electrical noises. In addition, multifunctional characteristics such as high chemical strength, high thermal conduction and selective optical properties presented their applicability in various interdisciplinary research fields. The high electrical conductivity and optical transparency also suggest both the materials as candidates for transparent conducting devices, specially required in touch-screens, liquid crystal displays, organic photovoltaic cells and organic light-emitting diodes. Moreover, being single-crystal materials, both provide an easy understanding about the working mechanism as well as control over engineering their functionalities, which can easily be modelled using computational techniques.

The significance of these materials arises due to a need to address the following key issues such as self-contained integrated device without any size constraint, being able to modify and design favourable interfaces to attract chemical analytes, achievement of efficient transduction for enhancing sensitivity and selectivity of the chemicals and faster response time in very sensitive systems. Low-dimensional materials have shown potential to majorly solve these issues because materials at this dimension provide an important surface chemistry than in bulk, and the role of CNT and graphene has become important due to their tunable characteristics. This review focuses on the specific properties of these materials, which contribute to solving the above-mentioned issues for chemical sensing. Both graphene and CNT have emerged as materials having exceptional electronic, mechanical, thermal and optical properties due to unique one- and two-dimensional sp^2-bonded structure respectively. While both show a high sensitivity towards any changes in their chemical environment, the advantages in structural properties make one material favourable over the other. CNT materials have shown potential to majorly enhance sensitivity and selectivity of the chemicals and two-dimensional sp^2-bonded structure respectively. While both show a high sensitivity towards any changes in their chemical environment, the advantages in structural properties make one material favourable over the other. CNT materials have shown potential to majorly enhance sensitivity and selectivity of the chemicals and two-dimensional sp^2-bonded structure respectively. While both show a high sensitivity towards any changes in their chemical environment, the advantages in structural properties make one material favourable over the other. CNT materials have shown potential to majorly enhance sensitivity and selectivity of the chemicals and two-dimensional sp^2-bonded structure respectively. While both show a high sensitivity towards any changes in their chemical environment, the advantages in structural properties make one material favourable over the other. CNT materials have shown potential to majorly enhance sensitivity and selectivity of the chemicals and two-dimensional sp^2-bonded structure respectively. While both show a high sensitivity towards any changes in their chemical environment, the advantages in structural properties make one material favourable over the other. CNT materials have shown potential to majorly enhance sensitivity and selectivity of the chemicals and two-dimensional sp^2-bonded structure respectively. While both show a high sensitivity towards any changes in their chemical environment, the advantages in structural properties make one material favourable over the other. CNT materials have shown potential to majorly enhance sensitivity and selectivity of the chemicals and two-dimensional sp^2-bonded structure respectively.
The motivation in selecting this topic lies in developing an understanding of the working principle of these two materials, which can answer the following questions: what specific advantages do CNT and graphene provide over conventional materials for chemical sensing of gases and vapours. Which of these two materials provide significant advantages for the detection, and how can we improve the development of these sensors to expedite the current technology.

Properties of carbon nanotubes

Single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) have single and several concentric tubes respectively, with a common axis along the length of the individual CNT. Higher aspect ratio between the tube length and diameter provides an important characteristic to CNT to utilize them for large-scale applications. Importantly, CNT are electrochemically active due to the asymmetrical distribution of electron clouds around them, which provide a rich π-electron conjugation along the CNT walls. Furthermore, electronic properties of SWCNT are controlled by its rolling direction, which is known as chirality (Figure 1).

It is the angle of rolling of graphene sheet that provides alignment of π-orbitals. The chiral vector \(C = n\mathbf{a}_1 + m\mathbf{a}_2 \), where \((n, m) \) are integers of hexagons, can be obtained after traversing in the two-unit vector directions \(\mathbf{a}_1 \) and \(\mathbf{a}_2 \) in the planar lattice of graphene. These vectors help in determining electrical properties of the resulting SWCNT; if \((n - m) \) is a multiple of 3, then the resulting CNT will be metallic, otherwise it will be semiconducting in nature.

Figure 1. a, Schematic demonstration of the roll-up graphene to form zigzag, armchair and chiral CNT. Chiral vectors are shown in the respective directions. b, Computational image of a MWCNT consisting of concentric graphene walls.

Large-scale synthesis of carbon nanotubes

CNT are synthesized by employing various techniques such as arc discharge, laser ablation or chemical vapour deposition (CVD). Using arc discharge, the yield is up to 30% by weight; however, laser ablation produces about 70% by vapourizing a graphite target in a high-temperature reactor. The catalytic vapour deposition of CNT at 700–800°C gives the highest yield. This is the most common method for commercial production. In this process the substrate is heated to high temperature in the presence of a process gas and carbon-containing gases. CNT grow at the catalyst metal sites. Carbon-containing gas breaks at the surface of the catalyst particles. Then carbon is transported to the edge of the deposited particles on the substrate, where CNT form. Then catalyst particles can stay at the tip or base of the CNT. Also, if the plasma is created by electric field during the growth process (plasma-enhanced chemical vapour deposition), then the CNT growth follows the direction of the applied electric field. However, without plasma CNT randomly align on the substrate. Overall, for CNT synthesis laser ablation is the most expensive and arc discharge results in a low yield. Therefore, CVD is the most promising method for industrial-scale deposition. The length of CVD-grown CNT can be varied from microns to millimetres.

Chemical functionalization of carbon nanotubes for gas-specific sensing

Recently, CNT-based electronic gas sensors either in the form of chemiresistors or back-gated field-effect transistors have been designed to detect various gases. In these sensors, CNT are often used after doping or...
Figure 2.

- **a**, Atomic force microscopic image of the semiconducting SWCNT between metal electrodes, used as sensor device.
- **b**, Current response of SWCNT-based FET device with the gate voltage ($I - V_g$) measured for both NO$_2$ and NH$_3$ gases.
- **c**, Conductance versus time response for 200 ppm NO$_2$ and 1% NH$_3$ exposures respectively.

Functionalization with different polymers$^{21-24}$ and metal/metal oxides$^{25-28}$ to enhance the selective detection to different gases and the sensitivity of CNT-based sensors. Generally, CNT accept electrons in the sensing process; hence hole density in the defect sites decreases, which reduces the current. The response time of CNT is mainly governed by the generation of the charge carriers in the defect sites and depends on how quickly these carriers can be transported from the defect sites to the electrodes. This section provides details on chemical modification of CNT for various gases.

Carbon monoxide (CO) is an odourless and colourless gas. The primary constituent of coal gas is widely used for domestic cooking/heating. CO combines with a haemoglobin to form carboxyhaemoglobin, which obstructs oxygen transportation in the body. High concentration (>150 ppm) of CO becomes a health hazard and even leads to death. Hence due to its toxicity, it is important to sense even traces of CO. CNT are used for CO sensing using several methods of functionalization. Zhao et al.29 demonstrated high selectivity in oxygen plasma-modified CNT that can be used effectively for CO sensing up to 5 ppm at room temperature. The main reason for this detection was stated through generation of disorder structures that led more gas molecules to be adsorbed, as described earlier. Dong et al.30 used carboxylic acid-functionalized CNT for detection of 10 ppm CO gas through weak hydrogen bonding with the attached carboxylic group. Thus, the carboxylic acid group was shown to play a key role in CO gas detection, when a decrease in the electrical resistance of CNT was observed, despite CO being an electron-withdrawing gas. Carbon dioxide is a reducing gas and its absorption in CNT takes place through injection of electrons. In p-type semiconductor, holes are the main charge carriers and depletion of holes will result in an increase in resistivity or decrease in conductivity of the material. Ong et al.31 demonstrated MWNT composite with SiO$_2$ for CO$_2$ detection on a planar inductor–capacitor resonant circuit. CNT functionalized with a polymer matrix consisting of polyethylenimine (PEI) and starch showed excellent sensitivity up to 500 ppm and 10% in air. The detection of nitric oxide is important in medicine to check NO level in a patient’s breath. Metal nanoparticles (Pt, Pd, Au, Ag) decorated CNT show a unique electrical response to NO detection32, whereas WO$_3$ films impregnated with CNT show sensitivity to 500 ppb under ambient condition. Ammonia and nitrogen dioxide gases have also been detected using polymer poly(m-aminobenzene sulphonic acid) (PABS) and polymer polyaniline (PANI).

Carbon nanotube-based chemical sensors

It is important to recognize the nature of CNT for operation of CNT-based field-effect transistors (FET). Kong et al.5 fabricated the first CNT gas sensor in 2000. Thereafter, several efforts have been made to improve the
performance of CNT gas sensors, which includes polymer functionalization, metal nanoparticle decoration, etc.33-36. The underlying sensing mechanism still remains unclear despite the tremendous progress made. Majority of the sensors involve changes in their electrical conductivity due to the local chemical environment. For example, interaction with electron-donating species will result into lower holes concentration, which shifts transfer characteristic towards negative voltages, while electron withdrawal will increase the holes concentration in CNT to enhance the conductance and transfer characteristic shifts towards the positive voltage side37. This basic approach of detecting various harmful chemicals such as NH\textsubscript{3}, NO\textsubscript{2}, CO, CO\textsubscript{2}, H\textsubscript{2}S, SO\textsubscript{2}, etc. brings a diverse interaction mechanism, which has to be realized for better functioning of the chemical sensors. Different gases have different kinds of interactions with CNT and hence impacts on its conductivity. As mentioned earlier, the magnitude of conductivity and the positive and negative shifts with respect to the applied bias voltage provide an indication about the interacting species whether it is an electron acceptor, for example, NO\textsubscript{2}, or an electron donor, for example, NH\textsubscript{3} or CO. Commercially available solid-state sensors that usually operate at high temperature show incapability for high analyte selectivity. Kong \textit{et al.}5 demonstrated the potential of CNT-based gas sensors (Figure 2a) for NO\textsubscript{2} and NH\textsubscript{3} gases. Both NH\textsubscript{3} and NO\textsubscript{2} exposure of the semiconducting SWCNT-based sensor resulted in a shift in the transfer characteristic of approximately +4 V and −4 V respectively (Figure 2b). In addition, NH\textsubscript{3} exposure reduces the device current at a zero gate voltage and NO\textsubscript{2} increases the current at +4 V gate voltage. The response time for detection of 200 ppm NO\textsubscript{2} was a few seconds (Figure 2c) and for detecting 1% NH\textsubscript{3} it was a few minutes (Figure 2d). The effect of NO\textsubscript{2} was explained on the basis of its electron accepting nature; it removes electrons from SWNT at a rate of approximately 0.1 electron per NO\textsubscript{2} molecule upon adsorption. However, in the article of Kong \textit{et al.}5, the device response towards NH\textsubscript{3} was unclear and the authors indicated that due to lack of binding energy between gas molecule and SWCNT, NH\textsubscript{3} might influence indirectly the electronic properties of SWCNT.

An enhancement of NH\textsubscript{3} gas sensitivity at room temperature was reported by coating Co nanoparticles onto MWCNT surfaces38. The response was enhanced twice compared to the uncoated MWCNT and the response time for detection of 7 ppm NH\textsubscript{3} was 30 sec only. The response of the sensors was shown to increase more rapidly in lower concentration region compared to higher concentration region. However, the exact mechanism has not been explored. Sensitivity of the CNT-based sensor for NO\textsubscript{2} gas detection was further enhanced to ppb level (100–50 ppb), when Lee \textit{et al.}39 demonstrated the effect of both contact metals, Pt used for electrodes as well as decorated Pd nanoparticles, as shown in Figure 3a and b respectively. The sensing response was shown to depend on the applied bias, which was explained by the formation of Schottky junction between CNT and Pt electrode, where the work functions are 4.5 and 5.65 eV respectively.

Therefore, there is an in-built potential of 1.15 eV for electrons transferring from CNT to metal electrodes (Figure 4a). This potential barrier reduces under application of bias, hence carrier transfer from CNT to Pt also increases.

When Pd nanoparticles were coated onto CNT, each nanoparticle form an Schottky contact induced depletion region, which reduces the hole carrier mobility. In this case, supply of electron carriers increases electron–hole recombination by reacting with oxidizing NO\textsubscript{2} gas, which lowers hole carrier density in CNT, causing formation of localized depletion region. Therefore, this reaction causes an increase in the sensor resistance, thus enhancing the sensor response (Figure 4b). Moreover, Lee \textit{et al.}39 have proposed that the arrangement of metal decoration has an advantage of preventing modification of Schottky barrier modulation by absorbed gases to ensure the sensor response is due to CNT activity only. Han \textit{et al.}40 demonstrated an enhanced nonlinear sensitivity in CNT and graphene oxide hybrid flexible film for NO\textsubscript{2} detection up to 0.5–10 ppm. This nonlinear sensitivity is due to the non-uniform diffusion of the molecules from top to bottom of the vertical CNT arrays. Further, Chen \textit{et al.}41 achieved a detection limit of parts per quadrillion of both NH\textsubscript{3} and NO\textsubscript{2} by \textit{in situ} ultraviolet illumination at room temperature for removing desorbed contaminants onto the CNT surface.

CNT sensors have also been used for detecting SO\textsubscript{2} and H\textsubscript{2}S, which are flammable and toxic with a lower explosive limit. SO\textsubscript{2} showed a similar response towards CNT as was observed for NO\textsubscript{2} sensing due to SO\textsubscript{2} being both oxidizing and reducing in nature. Zhang \textit{et al.}42 revealed the selectivity of MWCNT towards H\textsubscript{2}S and SO\textsubscript{2} by modifying CNT with atmospheric pressure dielectric barrier discharge air plasma at different exposure times. The modified MWCNT were shown to possess a higher sensitivity towards H\textsubscript{2}S, while they showed almost no sensitivity to SO\textsubscript{2}. This was described as follows: plasma treatment in this study modifies the MWCNT surface by introducing carboxyl and nitrogen containing groups, therefore, under SO\textsubscript{2} exposure, electrons transfer from SO\textsubscript{2} to MWCNT takes place due to weak carboxyl oxidizability. Also, electron transfer from MWCNT to SO\textsubscript{2} takes place because of the presence of N atoms, which are electron-rich. When both the processes achieve equilibrium, no electron transfer takes place between SO\textsubscript{2} and MWCNT, which shows no sensitivity to SO\textsubscript{2}. However, presence of carboxyl groups provides more adsorption sites for H\textsubscript{2}S molecules and hence, there is more transfer of charges from H\textsubscript{2}S to MWCNT.

Similarly, other gases like CO and CO\textsubscript{2}, which are considered explosive and toxic at lower concentration...
(5–12%) in air, are also important to be detected with high precision. CNT-based sensors have played an important role for their early detection. CO absorbs onto CNT surface by hydrogen bonding through hydroxyl group formed as a result of purification process. Varghese et al.43 showed that CNT could detect the presence CO through capacitive changes. Chopra et al.44 detected CO in the ppb regime by changes in resonance frequency of the sensor, where gas absorption results into modifying dielectric constant of the substrate. Further, CNT functionalization with polyaniline results in a reversible response to CO for 100–500 ppm detection. Zhao et al.45 have calculated a net transfer of 0.015 electrons into the CNT per adsorbing CO$_2$ molecule, which has not been realized experimentally so far. Moreover, excellent sensitivity to CO$_2$ was shown in functionalized CNT with polymer matrix consisting of PEI and starch. The response of CO$_2$ exposure was revealed to be reversibly decreasing, which was scaled linearly with CO$_2$ concentration. Ong and Grimes31 used a composite of MWCNT and SiO$_2$ deposited onto planar inductor–capacitor resonant circuit. Change in resonant frequency of the sensor provided the complex permittivity of the material and the permittivity of MWCNT was shown to change linearly with CO$_2$ exposure.

Properties of graphene

As mentioned above, CNT have shown a great potential for chemical sensing due to excellent electrical properties, high surface to volume ratio and large gas absorption capacity. However, graphene having large specific surface area (2630 m2 g$^{-1}$) providing the largest sensing area per unit volume and high electron mobility at room temperature showed higher sensitivity than CNT46. In 1946, the electronic structure of graphene was described as a building block of the graphite. The valence and conduction bands of graphene touch at the high symmetry points K and K' of the Brillouin zone, as depicted in Figure 5.
The interaction between graphene and the adsorbing molecule varies between weak van der Walls and strong covalent bonding, which can be readily monitored through changes in its electronic system and shows capability to detect small changes in conductivity. Graphene device also showed a relatively low Johnson noise and 1/f noise due to high conductivity and low crystal defect density. Therefore, graphene has been presented as a potential building block for next-generation high-speed and sensitive electronic devices. This ultra-high sensitivity of the pristine graphene is attributed to an exceptionally low-noise material.

Synthesis of graphene

There are different methods reported in the literature to fabricate graphene. Among these, mechanical cleaving of graphite, chemical cleaving or exfoliation of graphite, epitaxial growth and CVD are most widely used methods. For mechanical cleaving of graphite, a repeated stripping of graphite with adhesive tape is involved to obtain a single layer. These isolated layers can be resolved using optical microscope, atomic force microscopy or Raman spectroscopy. Chemical exfoliation of graphite employs a strong acidic solution to introduce oxygen into graphene interlayers and form graphene oxide (GO). GO can be easily separated into single layers after dispersion into an aqueous solution. Heating of hexagonal silicon carbide crystals to a high temperature (~1200°C) is required for epitaxial graphene by evaporating silicon and forming basal planes of graphene. A large-area graphene can be fabricated using this method. In addition, CVD allows graphene growth on metal substrates like copper and nickel using hydrocarbon gases at 700–1000°C. This method also produces a large-area graphene. However, we do not have any control over monitoring the number of layers or impurities arising during growth.

Graphene-based sensors

Similar to CNT-based devices, graphene also presents sensitivity towards detecting adsorbed molecules onto the surface (e.g. NH₃, NO₂, CO, H₂S, NO₂, etc.). Based on different compositions and structures of the gaseous analytes, graphene interacts in distinct modes. There are several reports on revealing the strength and nature of adsorption as well as charge transfer between adsorbed analyte and graphene. Since graphene is capable of detecting individual molecule, it has become important to understand the charge transfer mechanism and nature of molecule–graphene interaction.

Gate voltage sweep allows following the time evolution of the Dirac peak (peak in the drain-source resistance), which emerges from the change in Fermi level in graphene due to adsorption and desorption of molecules. An approximate relationship between the number of electrons per unit area (n) and gate voltage (Vg) is used to describe the graphene response to gate voltage:

$$n \approx \varepsilon \varepsilon_0(V_g - V_{Dirac})/e = \alpha(V_g - V_{Dirac}),$$

where \(\varepsilon\) and \(l\) are the gate dielectric permittivity and thickness respectively, \(e\) is the charge of the electron and \(V_{Dirac}\) is a constant. Also, an approximate relationship between \(E_f\) and \(V_{Dirac}\) for graphene FET is given by the following equation:

$$E_f \approx \pm 31.7(meV/\sqrt{V})V_{Dirac},$$

where \(e\) is the charge of the electron, \(m\) the mass of electron and \(V_{Dirac}\) is a constant related to the net charge on the graphene. Positive and negative signs are for hole and electron conduction respectively. Romero et al. showed a negative shift in the Dirac peaks in FET device resulting from upshifting of \(E_f\) at the Brillouin zone corners during NH₃ detection. Similar to the charge transfer of 0.03 electrons per adsorbed NH₃ molecule from NH₃ to SWCNTs (defect free), with graphene, NH₃ molecules act as donors with the same charge transfer of ~0.03 electrons.

![Figure 5](image5.png)
Figure 5. Band structure of graphene single layer. A linear dispersion relation is shown at the Dirac point.

![Figure 6](image6.png)
Figure 6. DOS of graphene with adsorbed NH₃ molecule. (Inset) HOMO (a) and LUMO (b) of NH₃ (ref. 57).
electrons. In a first principle calculations, Leenaerts et al.57 presented two main mechanisms for charge transfer, which depends on the magnetic properties of the adsorbing molecules. Ammonia is shown to have closed shell structure and hence is nonmagnetic, whereas NO\textsubscript{2} is paramagnetic when interacting with graphene monolayer. The charge transfer was shown to determine the orientation of the molecule; for example, NH\textsubscript{3} has shown two possible orientations w.r.t graphene surface, one with H atoms away from the surface (a) and another with the H atoms pointing inside the surface (d), as shown in Figure 6.

A small charge transfer of 0.03 electrons was determined in the d direction, while there was no charge transfer in the a direction. In the a configuration, highest occupied molecular orbital (HOMO) is described to be the only orbital that can have a significant overlap with the graphene orbital, thus NH\textsubscript{3} acts as an electron donor. However, both HOMO and lowest unoccupied molecular orbital (LUMO) in the d configuration interact with the graphene surface, resulting in zero charge transfer. The same group also demonstrated that LUMO of NO\textsubscript{2} is located at 0.3 eV below the Dirac points; therefore NO\textsubscript{2} accepts a large charge from graphene. Yoon et al.58 demonstrated CO\textsubscript{2} sensitivity of the graphene device up to 10–100 ppm for a fast response time of 8–10 sec (Figure 7). CO\textsubscript{2} molecule acts as a donor/acceptor on the graphene sheet. Again, the physical adsorption of CO\textsubscript{2} gas on the graphene sheet is the dominant sensing mechanism that indicates a charge transfer. The recovery time for CO\textsubscript{2} was found shorter than NH\textsubscript{3} and NO\textsubscript{2} due to weaker interaction with graphene.

Chu et al.59 studied hydrogen detection using epitaxial graphene with a thin catalyst layer of Pt, which showed a reduced resistance upon exposing it with 1% hydrogen at various temperatures (Figure 8a). Hydrogen accumulates at the surface of Pt after dissociation and forms a covalent bond with graphene. It is known that hydrogenated graphene has an increased work function, which causes the Fermi-level shift to become larger. Therefore, the free carrier will increase. Chen et al.60 also showed change in graphene conductivity upon exposure of 1.25% oxygen (Figure 8b). Oxygen upon exposure to graphene forms epoxide and carboxylic groups that are electron-withdrawing and increase concentration of holes in the conduction band, which significantly decreases the resistance.

Schedin et al.54 were the first to fabricate microscopic sensor capable of detecting individual gas molecules. Their Hall effect measurements show the generation of extra charge carrier during gas absorption that provided strongest response to the change in charge carrier density near the Dirac point (Figure 8). They have shown that graphene resistivity is sensitive to the adsorption of gases. The change in magnitude and sign of the resistivity graphene resistivity is sensitive to the adsorption of gases. The change in magnitude and sign of the resistivity was revealed, as an indication of whether the adsorbed gas is an electron acceptor or donor (Figure 9a). In addition, change in Hall resistivity by adding one electron demonstrated the ability of graphene to detect single adsorbed molecule (Figure 9b). It is concluded that adsorption of acceptor gas can increase the number of holes or the number of electrons for donor gas. This study claimed that graphene-based gas sensor has a limit of detection as low as parts per billion. Furthermore, to reduce contact resistance, a high driving current was used to reduce the Johnson noise by annealing few layers of graphene. Their optimized sensor could detect single NO\textsubscript{2} molecule. Furthermore, the noise at low frequencies can also be used as a parameter to enhance the selectivity of the graphene-based sensors. The gas molecules during adsorption process can create specific traps and scattering centres in the graphene sheet, resulting in fluctuation in either charge mobility or carrier concentration. The frequency range of the resulting noise and the relative resistance change can provide distinct signature for different gases. Most of the sensors showed poor reversibility,

\textbf{Figure 7.} a, Change in conductivity response of the graphene sensor with time of exposure of 100 ppm CO\textsubscript{2} at different temperatures. b, Change in conductivity with different concentrations of CO\textsubscript{2} exposure68.
Figure 8.

(a) Current response of the graphene sensor measured with time of exposure of 1% hydrogen.

(b) Current change in graphene-based gas sensor to different concentrations of oxygen.

Figure 9.

(a) Change in resistivity of graphene after exposure to different gases (NH₃, CO, CO₂, NO₂) diluted to 1 ppm concentration. The positive and negative signs are shown to indicate electron and hole doping respectively.

(b) Change in Hall resistivity near the Dirac point during adsorption of NO₂ and its desorption at 50°C (shown by arrow).

which causes an unreliable sensing output along with lower sensitivity. Ultraviolet light was used to clean the sensing layer adsorbed during chemical exposure. The limit of detection of NO was tested to be 158 ppq, which is three times lower than that achieved using CNT-based sensors. The sensor also showed sensitivity towards other gases, including NH₃, NO₂ and NO, with limit of detection in the range 38.8–136 ppt. Figure 10a and b shows the change in conductance of the graphene sensor upon exposure to NH₃ with and without UV exposure respectively. It is clear that the sensitivity of the sensor enhances to ~83 ppb to 200 ppt.

The defects in graphene were presented to be playing a significant role in gas sensing. First principle simulations indicated that the defective sites in graphene interact strongly with CO, NO and NO₂, but weakly with NH₃. Nitrogen doping of graphene showed a strong binding with NO₂ molecule, whereas boron doping exhibits enhanced interactions with NO₂, NH₃ and NO gas molecules. Ao et al. studied the adsorption of CO on aluminum-doped graphene using density functional theory. CO adsors strongly on graphene through Al–CO bonding. However, CO molecules weakly absorb onto pristine graphene with a small binding energy. Metal oxides have been used for sensing applications due to their large specific surface area and mechanical flexibility. Composites with graphene in their hybrid architectures have shown the possibility to improve their sensing characteristics.
Noble-metal-decorated graphene composites show their prospects for a new type of sensing material with higher sensitivity and selectivity.63,64

Conclusion and outlook

CNT and graphene offer various advantages over commercially available sensors such as metal oxide sensors, infrared and optical sensors. The sensitivity of bulky and expensive metal oxide sensors is found moderate between 30 and 50 ppm. In addition, these sensors require a high operating temperature up to 600°C, which raises the power consumption, operation complexity and device price. However, CNT and graphene sensors provide high sensitivity up to sub ppb level for a range of gases at room temperature.

CNT have been presented as an ideal material for developing sensor technology because of their unique material characteristics of small size with high aspect ratio that enables them to integrate into large electronic systems. High fraction of surface atoms acts as a highly sensitive detection layer with efficient electron conduction channel. CNT present a broad range of chemical sensitivities for developing sensors for different areas such as industrial, environment, medical and military. Despite their promises, CNT still face considerable challenges due to involved structural heterogeneity. The existing growth methods do not allow controlling structural uniformity such as diameter, number of graphene walls and electrical properties by separating metallic and semiconducting CNT. However, freestanding graphene also presented the possibility of high sensitivity towards detection of chemical analytes, in addition to several advantages over CNT-based sensors. Graphene is shown to exhibit inherently low electrical noise at room temperature and high electron mobility, which enhance its sensitivity compared to CNT. Also, compared to CNT, graphene is relatively easier for electrical manipulation. But there are challenges involved in utilizing graphene as a highly sensitive sensors, which lie in controlling different number of layers, preserving them from folding and bending during processing, minimizing substrate effects, in addition to avoiding undesired surface contamination produced during micro-fabrication processes.

However, recent efforts have succeeded in overcoming the above-mentioned issues, thus increasing their usefulness to achieve multifunctionality of these sensors. In future, the largest potential for developing CNT-based sensor technology lies in the development of compact, low power, portable sensor arrays that should allow detecting and screening multiple chemical analytes. Additionally, room-temperature operation will eliminate the requirement of complex heating parameter, which will result in low power consumption and improve the sensor battery lifetime. Decreased manufacturing cost combined with wireless technology will allow production of large wireless sensor networks. These show prospects towards achieving a sensor material with superior sensitivity, much reduced size, light weight, compact and extended life for innumerable applications.

SPECIAL SECTION: CARBON TECHNOLOGY