Frontal recession of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2006, measured through high-resolution remote sensing data

Rakesh Bhambri1, Tobias Bolch2 and Ravinder Kumar Chaujar3,*

1Center for Glaciology, Wadia Institute of Himalayan Geology, Dehradun 248 001, India
2Geographisches Institut, Universität Zürich, Switzerland
3Wadia Institute of Himalayan Geology, Dehradun 248 001, India

We report in this communication the length fluctuation and frontal area changes at the snout of Gangotri Glacier based on high-resolution satellite data from 1965 to 2006. Glacial outlines were mapped from declassified imageries from Corona (1965, 1968), Hexagon (1980) and Indian satellites IRS PAN (2001) and Cartosat-1 (2006). The results show that Gangotri Glacier exhibited retreat up to 819 ± 14 m and lost 0.41 ± 0.03 sq. km (~ 0.01 sq. km year⁻¹) at its front from 1965 to 2006. The retreat rates are lower than those previously reported using coarse-resolution remote sensing data and the Survey of India topography map. The results of the present study are supported by in-situ field survey conducted by the Geological Survey of India.

Keywords: Gangotri Glacier, remote sensing, retreat, satellite data.

GANGOTRI Glacier is the largest glacier (length ~ 30 km) in the Garhwal Himalayas. The Bhagirathi River originates from the snout (Gaumukh; ~ 3950 m asl) of Gangotri Glacier, which is the main source stream of Ganga River (Figure 1). Gangotri Glacier originates from the Chaukhamba group of peaks (~ 6853–7138 m asl) and flows northwest towards Gaumukh. About 29% of its total area is covered by debris1. Gangotri Glacier is one of the well-documented and monitored glaciers in the Indian Himalayas as regards to its snout position. Auden2 first systematically mapped the snout and geomorphic features of Gangotri Glacier in 1935 using a plane-table survey at a scale of 1 : 4800. Several scientists from GSI have resurveyed Gangotri Glacier and marked the position of the snout on Auden’s plane-table map and measured its length in terms of retreat3–6. Length records though are not the most significant parameter for glacier

*For correspondence. (e-mail: rchaujar@gmail.com)
changes, are easy to measure, and are available for many glaciers around the world\(^7\). These records are useful to reconstruct glacier mass balance\(^8,9\); estimate the glacier contribution to sea-level rise\(^10,11\); historical equilibrium-line altitudes\(^12\); response times of glaciers\(^13,14\), and global and hemispheric temperature\(^15\). In addition, several remote sensing-based studies have mapped Gangotri Glacier using various multi-temporal and multi-spectral satellite data and measured its linear retreat\(^6,16-21\) (Table 1). Among these studies, few have used Survey of India (SOI) topography maps\(^17,18,20\) or coarse-resolution satellite data\(^19\) (e.g. Landsat MSS with a spatial resolution of 79 m) to acquire older glacier extents (1960s and 1970s) for quantifying variability records of Gangotri Glacier. However, studies have shown examples of inaccuracies in SOI topographical maps\(^22-26\). In addition, interpretation of debris-cover, shadow area and seasonal snow on satellite images is known to be one of the major challenges in glacier inventories and glacier change studies\(^26-31\).

Declassified imagery (e.g. Corona and Hexagon) or aerial images from the 1960s and 1970s are ideal to map historic extents of glaciers\(^30-35\), and can also be used for comparison with glacier outlines derived from old topography maps\(^30,36\). These images are accessible from United States Geological Survey website (USGS; http://edcns17.cr.usgs.gov/NewEarthExplorer/). The Corona satellite orbit was near-polar and circular. However, the orbit inclination and equator crossing time were different for different missions\(^34\). Therefore, there is no systematic coverage of the earth’s surface. Generally, the inclination angle varied from 60° to 100° (measured from the equator)\(^34\). However, to the best of our knowledge there have been no attempts earlier to measure length records of Gangotri Glacier from historic high-resolution Corona and Hexagon imageries. Thus, the main goals of the present study are: (1) to generate length records and area vacated by Gangotri Glacier at the snout from declassified imageries, and (2) to compare our results with the SOI topography map (1962) and previous remote sensing and field records.

We used two high-resolution Corona KH4A imageries for 24 September 1965 and 27 September 1968, and KH-9 Hexagon imagery for 8 September 1980 with minimal snow to extract the historic extent of Gangotri Glacier (Table 2). In addition, orthorectified 2006 high-resolution Cartosat-1 and 2001 IRS-1C PAN images and 2006 ASTER DTM, generated for a previous study\(^31\) were used for the extraction of recent glacier outlines. The Cartosat-1 imagery was used as base image for rectification of older Corona and Hexagon imageries. These older images were co-registered based on a two-step approach: (i) a projective transformation was performed based on ground control points (GCPs) and the ASTER DTM using ERDAS Imagine 9.3, followed by (ii) a spline adjustment using ESRI ArcGIS 9.3 (refs 1, 30). For older declassified imageries between 30 and 50, GCPs were acquired from Cartosat-1 imagery for co-registration.

The glacier extents were manually delineated from panchromatic data of Corona, Hexagon, IRS PAN and Cartosat-1 imagery. For the calculation of length changes, stripes with 50 m distance were drawn parallel to the main flow direction of the glacier (Figure 2). Length change was calculated as the average length from the intersection of the stripes with the glacier outlines\(^36\). Based on the outlines of the different years, the area vacated near the snout was also calculated. We also calculated length changes in terms of its retreat along the central flow line to be compared with results derived from average length from the intersection of the stripes with the glacier outlines. Geomorphic features such as gully talus and moraines presented by GSI studies\(^2,37\) in large-scale map were also mapped from 1968 Corona imagery (Figure 3). These moraines were dated using lichenometry\(^37\).

Glacier outlines derived from various satellite datasets with different spatial resolutions, obtained at different times with varying snow cover, cloud and shadow conditions have different levels of accuracy. Thus, estimation of the uncertainty is crucial to know about the accuracy and significance of the results. The Spline method

<table>
<thead>
<tr>
<th>Period</th>
<th>Total (m)</th>
<th>Mean rate per year (m)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1935–1996</td>
<td>1220</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>1962–1999</td>
<td>1250</td>
<td>34</td>
<td>8,9</td>
</tr>
<tr>
<td>1935–1997</td>
<td>2500</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>1962–2000</td>
<td>1600</td>
<td>42</td>
<td>45</td>
</tr>
<tr>
<td>1985–2001</td>
<td>368</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>1962–2000</td>
<td>1510</td>
<td>40</td>
<td>18</td>
</tr>
<tr>
<td>1962–2006</td>
<td>1651</td>
<td>38</td>
<td>20</td>
</tr>
</tbody>
</table>

Figure 2. Glacier outlines derived from different satellite imageries and overlaid stripes with 50 m distance. The average retreat rates are derived from the intersection of the glacier outlines with the band of stripes.
Table 2. Details of satellite data used in the present study

<table>
<thead>
<tr>
<th>Satellite data</th>
<th>Date of acquisition</th>
<th>Spatial resolution (m)</th>
<th>Scene/product ID</th>
<th>Planimetric accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corona KHA</td>
<td>24 September 1965</td>
<td>4</td>
<td>DS1024-1023DF117</td>
<td>±5.2</td>
</tr>
<tr>
<td>Corona KHA</td>
<td>27 September 1968</td>
<td>4</td>
<td>DS1048-1134DF107</td>
<td>±3.2</td>
</tr>
<tr>
<td>KH-9 Hexagon</td>
<td>08 September 1980</td>
<td>7</td>
<td>DZB1216-500329L007001</td>
<td>±12.7</td>
</tr>
<tr>
<td>IRS PAN</td>
<td>26 October 2001</td>
<td>5.8</td>
<td>IRS1CDPSR1V4D090002600101</td>
<td>±10.7</td>
</tr>
<tr>
<td>Cartosat-1</td>
<td>28 September 2006</td>
<td>2.5</td>
<td>0970001100102</td>
<td>±10</td>
</tr>
</tbody>
</table>

Figure 3. Geomorphic features demarcation on Corona imagery according to Auden2 and Vohra37 large-scale map.

provides a precise registration with a minor error$. To assess the positional accuracy, 11 common geomorphic location points were identified on the base of Cartosat-1 and other Corona KH4A, KH-9 Hexagon and IRS-1C PAN satellite imageries$. The horizontal shift between base Cartosat-1 and corresponding Corona (1965, 1968), Hexagon (1980) and IRS PAN (2001) imageries was found to be 5.2, 3.2, 12.7 and 10.7 m respectively (Table 2). The uncertainty was calculated from the following formula for multi-temporal measures of the glacier front position using satellite images$.

\[
e = \sqrt{(a_1)^2 + (a_2)^2 + E_{reg}},
\]

where a_1 is the pixel resolution of imagery 1, a_2 the pixel resolution of imagery 2 and E_{reg} is the registration error.

Hence, the uncertainty can be estimated in case of the 1965 Corona imagery as follows:

\[
e = \sqrt{[(4)^2 + (2.5)^2]} + 5.2 = 10 \text{ m}.
\]

The uncertainty was 8 m for Corona (1968), 20 m for Hexagon (1980) and 17 m for IRS PAN imagery (2001). The uncertainty for glacial area was estimated by multiplication of the uncertainty of length with glacier width.

Our results show that Gangotri Glacier retreated $819 \pm 14 \text{ m}$ from 1965 to 2006 (Table 3). On an average, Gangotri Glacier retreated at the rate of $5.9 \pm 4.2 \text{ m/year}$ from 1965 to 1968 and $26.9 \pm 1.8 \text{ m/year}$ from 1968 to 1980, and it retreated $21.0 \pm 1.2 \text{ m/year}$ between 1980 and 2001. The recession rate declined during 2001–2006 and it receded at a rate of $7.0 \pm 4.0 \text{ m/year}$. Earlier studies on the recession of Gangotri Glacier using topography map and satellite data show higher estimation of recession than our assessments. For instance, one study$ estimated 1651 \text{ m}$ or an average 38 m/year retreat rate of Gangotri Glacier based on the 1962 topography map and 2006 ASTER imagery. Similarly, other studies$ reported about 1600 and 1510 \text{ m recession of Gangotri Glacier at its front from 1962 to 2000}$ respectively. All these estimations are almost twice as high as our results (1965–2006). However various studies$ show that the glacier outline derived from the SOI topography map (1962) covers an area near the moraine dated AD 1900 by Vohra$ up to the gully talus$ (Figure 3). This indicates that higher retreat of Gangotri Glacier is probably
Table 3. Total and average recession of Gangotri Glacier length

<table>
<thead>
<tr>
<th>Period</th>
<th>Total retreat (m)</th>
<th>Rate of retreat (m/year) along the central flow line</th>
<th>Total length change (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965–1968</td>
<td>–17.7 ± 12.8</td>
<td>–5.9 ± 4.2</td>
<td>–77 ± 12.8</td>
</tr>
<tr>
<td>1980–2001</td>
<td>–441.0 ± 26.2</td>
<td>–21.0 ± 1.2</td>
<td>–537 ± 26.2</td>
</tr>
<tr>
<td>Total</td>
<td>–818.9 ± 14</td>
<td>–19.9 ± 0.3</td>
<td>–1085 ± 14</td>
</tr>
</tbody>
</table>

Table 4. Total and average area vacated near Gangotri Glacier snout

<table>
<thead>
<tr>
<th>Year</th>
<th>Total area vacated at snout (10^3 m²)</th>
<th>Average area vacated at snout (10^3 m²/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965–1968</td>
<td>22.9 ± 6.0</td>
<td>7.6 ± 2.0</td>
</tr>
<tr>
<td>1968–1980</td>
<td>163.9 ± 10.1</td>
<td>13.7 ± 0.8</td>
</tr>
<tr>
<td>1980–2001</td>
<td>215.4 ± 12.3</td>
<td>10.2 ± 0.5</td>
</tr>
<tr>
<td>2001–2006</td>
<td>16.39 ± 9.4</td>
<td>3.2 ± 1.8</td>
</tr>
<tr>
<td>Total (1965–2006)</td>
<td>418.5 ± 37.8</td>
<td>10.2 ± 0.9</td>
</tr>
</tbody>
</table>

Figure 4. Glacier outlines derived from different high-resolution satellite data overlaid on Cartosat 1 (2006) imagery.

associated with the overestimated delineation of the glacier outline on SOI map. We also calculated the recession of Gangotri Glacier as shown in the satellite imagery by Kargel et al.39. The older terminus positions shown by Kargel et al.39 in satellite imagery are based on lichnometry37,40. A retreat of ~ 1444 m from 1935 to 2006 (~ 20.3 m/year) was calculated by Kargel et al.39 along the Bhagirathi River, whereas a GSI study6 suggests that Gangotri Glacier retreated by ~ 1220 m between 1935 and 1996, which amounts to an average rate of ~ 20 m/year.
We found that Gangotri Glacier receded about 764 ± 19 m between 1968 and 2001 (23.2 ± 0.6 m/year), whereas the field-based GSI study\(^6\) showed that its lost about 720 m length from 1971 to 1996 (~28.8 m/year). Previous remote-sensing studies\(^{17,18,20}\) calculated the retreat along the central flow line or more or less along the Bhagirathi River. Our results based on the average length from the intersection of the stripes with the glacier outlines reveal that Gangotri Glacier receded 819 ± 14 m from 1965 to 2006, whereas recession along the central flow line would be 1085 ± 14 m. These results show similar tendencies, but the measure based on one point of the glacier only may overestimate the recession and is more susceptible to outliers. The averaging along the front is a more robust method and provides more reliable estimations, especially in the situation of a change in location of the ice caves (Table 3).

The present study shows that Gangotri Glacier lost 0.41 ± 0.03 sq. km (~0.01 sq. km year\(^{-1}\)) area between 1965 and 2006 from its front (Table 4). These results are supported by in-situ field surveys conducted by GSI\(^5\). The GSI results indicate that Gangotri Glacier reduced its area at its terminus by 0.58 sq. km (~0.01 sq. km year\(^{-1}\)) between 1935 and 1996 (ref. 6). In addition, Auden\(^2\) noticed a single ice cave at the left side of Gangotri Glacier snout. Another GSI study\(^2\) reported two caves one small and one large, on the terminus of Gangotri Glacier in 1956. Furthermore, one more field-based photographic evidence shows that the ice near and between the two tunnels of Gangotri Glacier was vertically banded as a result of the flow structure imposed on the glacier where it had reunited after its bifurcation immediately upstream by a rock barrier\(^2\). Another study\(^4\) noticed only a single large cave on the right fringe of the snout during 1967. However, after 1956, the larger and prominent ice cave had been considered for the recession studies\(^3,6\). Shadows of ice caves on the 1965 and 1968 Corona satellite images suggest the existence of two caves at the terminus of Gangotri Glacier (Figure 4). This indicates that high-resolution satellite data provide more reliable results in comparison with previous studies\(^{17,18,20}\) based on coarser-resolution satellite data such as Landsat MSS and TM, and/or topography maps. We found slight advancement of the middle part at the terminus of Gangotri Glacier during 1968, which is probably concerned with deposition of ice block of the snout after its disintegration. This natural process was reported by an earlier study\(^42\). Our results suggest that in recent times (2001–2006) Gangotri Glacier has lost few square metres of the area, which has also been reported by prior field-based studies\(^25\). Frontal recession of Gangotri Glacier has shown variability in the amount, rate and time of occurrence during the study period. From 2001 to 2006, the recession of Gangotri Glacier has declined compared to the previous observation during the study period. However, it does not imply that Gangotri Glacier recession has ceased as length changes show only the indirect and delayed response of a glacier to climate change, in contrast to glacier mass balance. The response time of the large debris-covered Gangotri Glacier is likely to be much longer than that of smaller glaciers in the Garhwal region\(^{33}\). Thus the study of mass balance is needed for precise knowledge of glacier health. However, in situ measurements over the entire glacier are logistically difficult and hence not feasible owing to its size and characteristics. The geodetic approach using the presented Corona data\(^44\) could be a more suitable substitute as well as cost-effective method. Moreover, topographic parameters such as elevation range, aspect as well as glacier size, shape, motion, thickness and distribution of debris-covered area, contribution of tributary glaciers to the accumulation and the local topography influence glacier response, which need to be addressed in further studies.

The main challenges with the Corona data are the complex image geometry and the absence of satellite camera specifications. The positional accuracy of the rectified Corona imagery can be evaluated based on common unchanged location points. We have only addressed the length and frontal glacial area changes measured through the snout position on satellite imageries for different years. The uncertainty is negligible for the small area, but is usually higher when addressing a larger area. The Corona data are useful for providing insight into glacier changes since the 1960s, and the above mentioned field studies\(^5,6\) corroborate our results for Gangotri Glacier. Suitable declassified images are also available for many glaciers of other remote mountain areas where no aerial images are available or accessible.

RESEARCH COMMUNICATIONS

40. http://asterweb.jpl.nasa.gov/content/03_data/03_application_example_pxls/glacier/default.html.

ACKNOWLEDGEMENTS. We thank the Director, Wadia Institute of Himalayan Geology (WIHG), Dehradun for support and Deepak Srivastava, CFG-WIHG, for thoughtful discussion on Gangotri Glacier monitoring programme by GSI and valuable suggestions. R.B. thanks Drs D. P. Dobhal and Manish Mehta, CFG-WIHG, for support. We also thank Bhanu Pratap and Priyeshu Srivastava, CFG-WIHG for providing valuable suggestions and the anonymous reviewer for insightful comments and suggestions that helped improve the manuscript.

Received 25 April 2011; revised accepted 10 January 2012